Publications by authors named "Chunmei Shang"

The global challenge of male infertility is escalating, notably due to the decreased testosterone (T) synthesis in testicular Leydig cells under stress, underscoring the critical need for a more profound understanding of its regulatory mechanisms. CREBZF, a novel basic region-leucine zipper transcription factor, regulates testosterone synthesis in mouse Leydig cells in vitro; however, further validation through in vivo experiments is essential. Our study utilized Cyp17a1-Cre to knock out CREBZF in androgen-synthesis cells and explored the physiological roles of CREBZF in fertility, steroid hormone synthesis, and behaviors in adult male mice.

View Article and Find Full Text PDF

Endometrial receptivity is critical for the successful establishment of pregnancy in ruminants. Interferon tau (IFNT) plays a key role in promoting embryo attachment by activating the Janus kinase/signal transducer and activator of transcription pathway, which induces the expression of a series of interferon-stimulated genes (ISGs). In our previous study, sequencing analysis of goat endometrial epithelial cells (gEECs) treated with 20 ng/mL IFNT revealed a differentially expressed long non-coding RNA located on the STAT3 antisense chain, which we designated STAT3-AS.

View Article and Find Full Text PDF

Background: Semen cryopreservation has become an essential tool for conservation efforts of the giant panda (Ailuropoda melanoleuca); however, it is severely detrimental to sperm quality. Evidence has shown that antioxidants have the potential to reverse cryopreservation-induced damage in sperm. The purpose of this study was to screen effective antioxidants that could retain sperm quality during cryopreservation and to determine the optimal dose.

View Article and Find Full Text PDF

Interferon tau (IFNT), a pregnancy recognition signal in ruminants, promotes the establishment of embryo implantation by inducing the expression of interferon-stimulated genes (ISGs) via the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway. However, the precise regulatory mechanism of IFNT in goat embryo implantation remains largely unknown. In this study, we performed RNA sequencing of goat endometrial epithelial cells (gEECs) with or without 20 ng/mL IFNT treatment.

View Article and Find Full Text PDF

Follicular atresia is primarily caused by granulosa cell (GC) apoptosis, although the mechanisms are largely unknown. Ufmylation is a recently identified ubiquitin-like post-translational modifier that plays an important role in cell proliferation and apoptosis. The purpose of this study was to investigate the effects of Ufmylation on GC apoptosis during goat follicular atresia.

View Article and Find Full Text PDF

The endometrium plays an important role in the defence against invading pathogens, although the mechanisms are not clear. UFMylation is a recently discovered novel ubiquitination-like modification system that plays a pivotal role in inflammation and the immune response. The purpose of this study was to investigate the effects of UFMylation on lipopolysaccharide (LPS)-induced inflammatory responses in immortalized goat endometrial epithelial cells (gEECs).

View Article and Find Full Text PDF
Article Synopsis
  • Decidualization is super important for a baby to attach to its mom's uterus and grow the placenta, but scientists don't know much about how certain RNA types help with this process.
  • In a study, researchers looked at RNA from mice to see which lncRNAs are active during days 6 and 8 of pregnancy, finding 2332 types of these lncRNAs.
  • They discovered that one specific lncRNA, called Hand2os1, helps with the decidual process and is active in the cells of the uterus during early pregnancy, which can be affected by hormones.
View Article and Find Full Text PDF