Many regions have formed subsidence lakes due to underground mining in the world. However, seasonal variations of lacustrine groundwater discharge (LGD) rate and solute fluxes in the coal mining subsidence were rarely reported. In this study, we conducted four seasonal samplings in a coal mining subsidence, during which samples for stable water (δO) and radioactive (Rn) isotopes were collected to quantify the seasonal dynamics of LGD rates.
View Article and Find Full Text PDFCoal and grain complex areas influence the geochemical characterization of REEs through coal mining activities and agricultural production. However, there is a lack of relevant studies. In this study, we investigated the geochemical characterization and risk assessment of REEs in river sediments of the northern Anhui plain, a typical coal-grain composite area.
View Article and Find Full Text PDFMining activities cause surface subsidence and the formation of subsidence lakes, which dynamically change with the continuous coal mining activities. Under the combined influence of various human activities such as agriculture, aquaculture, and floating photovoltaic (FPV), the lake environment undergoes continuous changes, thereby altering the geochemical characteristics of rare earth elements (REEs) in the sediment. This study focused on the subsidence lakes in the Huainan coalfield in eastern China to examine the REEs content in the sediment, elucidated the temporal variations and geochemical characteristics of REEs distribution, explored the main controlling factors of REEs in the sediment, and revealed the migration and transformation behavior of REEs during dynamic subsidence processes.
View Article and Find Full Text PDFEast China is a highly aggregated coal-grain composite area where coal mining and agricultural production activities are both flourishing. At present, the geochemical characteristics of dissolved inorganic carbon (DIC) in groundwater in coal mining areas are still unclear. This study combined hydrochemical and carbon isotope methods to explore the sources and factors influencing DIC in the groundwater of different active areas in coal mining areas.
View Article and Find Full Text PDFThis study explores the mechanism underlying WIF1 promoter methylation and its relationship with the pathogenesis of endometrial carcinoma. WIF1 promoter methylation was detected using methylation-specific polymerase chain reaction (MSP). WIF1 expression was examined through qRT-PCR and western blotting.
View Article and Find Full Text PDFCoal mining has produced a large amount of coal gangue. It makes the soil around the mining area seriously polluted by heavy metals, affects the growth of crops, and endangers human health. Therefore, there is an urgent need to develop new materials for remediation of Cd in soil.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
March 2023
Many subsidence lakes have formed in eastern China as a result of underground coal mining. These coal mining-related subsidence lakes vary in their formation time and connectivity with rivers. These factors may influence the water chemistry and hydrogen and oxygen stable isotope characteristics of the lake water.
View Article and Find Full Text PDFA ZnCl-modified biochar-supported nanoscale iron sulfide composite (FeS-ZnBC) was successfully prepared to address the easy oxidization of FeS and enhance Cr(VI) removal from water. The material was characterized by SEM, XRD, FTIR, and XPS. The effects of FeS:ZnBC mass ratio, FeS-ZnBC dosage, solution pH, initial Cr(VI) concentration, and reaction time on the adsorption performance were investigated.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2022
Coal mining cities are universally confronted with the degradation of groundwater quality, and the sulfate pollution of groundwater has become a widely studied environmental problem. In this study, we combined multi-isotope (δS, δO-SO and Sr/Sr) approach with hydrochemical technique and a Bayesian mixed model to clarify sources and transformations and to quantitatively assess the contribution of sulfate from potential sources. The concentrations of SO in groundwater ranged from 7.
View Article and Find Full Text PDFInt J Environ Res Public Health
November 2022
Mining activities cause surface sulfate enrichment, which has negative impacts on human health and ecosystems. These high concentrations of sulfate may enter groundwater through the unsaturated zone (UZ), threatening groundwater quality. Therefore, we combined hydrochemical and dual isotopic analyses of sulfate in surface water, soil water and groundwater with evaluations of the UZ to identify the groundwater sulfate source and transformation in the coal mining area.
View Article and Find Full Text PDFThe rapid increase in urbanization and intensive coal mining activities have accelerated the deterioration of surface water quality. Environmental problems caused by the accumulation of nitrate and sulfate from natural, urban, and agricultural sources have attracted extensive attention. Information on nitrate and sulfate sources and their transformations is crucial for understanding the nitrogen and sulfur cycles in surface water.
View Article and Find Full Text PDFAs tracers, rare earth elements (REEs) can reflect the influence of human activities on the environmental changes in aquatic systems. To reveal the geochemical behavior of REEs in a water-sediment system influenced by human activities, the contents of REEs in the surface water and sediment in the Chaohu Lake Basin were measured by inductively coupled plasma mass spectrometry (ICP-MS). The results show that the ΣREE contents in the surface water are 0.
View Article and Find Full Text PDFIn this study, the surface of vermiculite-montmorillonite was modified by MnO loading. The modified vermiculite-montmorillonite was added to remediate the potentially toxic trace element (PTE) Hg present in soil containing coal gangue. Pot experiments were conducted to analyze and compare the pH values, Hg contents and Hg species present in coal gangue-containing soil, with and without the modified materials added, to determine whether the addition of modified materials had an effect on the growth of L.
View Article and Find Full Text PDFThe input of pollutants caused by human activities induces the deterioration of surface water quality. To reveal the characteristics of surface water quality in Chaohu Lake Basin and the influence of human activities, the hydrochemistry and stable isotope composition of hydrogen and oxygen in lake water and inflow river water were analyzed. The results show that the hydrochemical type of lake water is the Na-Cl type,while river water is the Na-Cl, Ca-Cl and mixed types.
View Article and Find Full Text PDFThis study investigated the environmental geochemical characteristics of rare-earth elements (REEs) in surface waters in the Huainan mining area, Anhui Province, China. The REEs concentrations were determined by ICP-MS, and the inorganic species of dissolved REEs in the river and coal mining subsidence area water samples were calculated by using the Visual MINTEQ (version 3.1) code.
View Article and Find Full Text PDFMining activities exert a far-reaching impact on the quality of groundwater, and health problems caused by heavy metal pollution have attracted global attention. In this study, inductively coupled plasma-mass spectrometry (ICP-MS) was employed to determine the contents of 8 heavy metals (Cd, Cr, As, Fe, Mn, Cu, Zn, and Pb) in shallow groundwater samples retrieved from a mining area in northern Anhui. Multivariate statistical methods were adopted to analyze the distribution and source of pollution and to evaluate 5% and 95% health risks based on Monte Carlo simulation.
View Article and Find Full Text PDFThe increase in NO content in surface water caused by intensive mining activities in Huainan City, China, has attracted considerable attention owing to the deterioration of water quality and the degradation of ecosystems in recent years. The Huainan mining area, which is highly disturbed by anthropogenic activities, was selected as a typical observation area, and the surface water was classified as open subsidence water (OSW), closed subsidence water (CSW), and river water (RW). Moreover, the hydrochemical parameters and the δN and δO values of nitrate were employed to quantitatively trace the sources and biochemical transformation of NO, and the contribution ratios of different NO sources were estimated using the stable isotope analysis in R based on the Bayesian model.
View Article and Find Full Text PDFThe increasing salinization of groundwater renders it challenging to maintain the water quality. Moreover, knowledge regarding the characteristics and mechanism of groundwater salinization in mining areas remains limited. This study represents the first attempt of combining the hydrochemical, isotope (δD, δO, δCl, and Sr/Sr) and multivariate statistical analysis methods to explore the origin, control, and influence of fluoride enrichment in mining cities.
View Article and Find Full Text PDFSlag tailings are produced by "cooling-grinding-ball milling-flotation" and other processes of slag, while slag is produced by the flash smelting of the original ore. The utilization and environmental hazards of arsenic in slag tailings have become a focus of attention. This study on slag tailings reveals the presence of arsenic in copper smelting tailings from the mineralogy and leaching perspectives, and the noncarcinogenic and carcinogenic risks of arsenic to the human body were assessed by using the USEPA health risk model.
View Article and Find Full Text PDFThe external nitrogen load input caused by human activities exacerbates the eutrophication process of aquatic ecosystems in mining areas, causing water quality problems. However, knowledge of the sources and environmental behavior of nitrate in the surface water of mining areas is still very limited. This study investigated the nitrate content and spatiotemporal variation characteristics of surface water in the Linhuan mining area, identified the sources and transformation processes of nitrate using isotopes and hydrochemistry, and evaluated the contribution rates of different potential nitrate sources based on a Bayesian mixing model.
View Article and Find Full Text PDFTo explore the sources and distribution characteristics of SO in the surface waters of the Linhuan mining area in Huaibei, river and surface water samples in subsidence and mine drainage locations in the study area were collected at different times. The conventional hydrochemical indexes and the eigenvalues of sulfur and oxygen isotopes were tested and analyzed. The results suggested the following: (1) The SO content showed seasonal changes: low-flow seasons > mid-flow seasons > high-flow seasons.
View Article and Find Full Text PDFMany studies have been carried out on the water environment in coal-mining subsidence area, which have mainly focused on the two aspects of nitrogen and phosphorus as well as heavy metal pollution in water. However, little attention has been paid to the problem of sulfate pollution. The surrounding conditions of subsidence area in Linhuan are complex, and there are a large number of coal gangue accumulation and coal mining activities.
View Article and Find Full Text PDFHigh levels of mercury contamination in urban street dust pose a great threat to human health. In this study, representative urban street dust samples in different urban zones were collected from industrial Huainan City, Eastern China. The distribution and human health risk of Hg in urban street dusts were investigated.
View Article and Find Full Text PDF