J Stomatol Oral Maxillofac Surg
November 2024
Fat-1 transgenic cattle have high levels of ω-3 fatty acids, which regulate several genes in fatty acid metabolism. In the current study, fibroblasts derived from in vivo fertilized (Ferti) and fat-1 transgenic (TG) Luxi cattle (Bos taurus), a local breed in China, were cultured and their miRNA expression was characterized. Expression of 352 known miRNAs differed in cells from Ferti and TG cattle: 83 miRNAs were found to be specifically expressed in cells from Ferti cattle while 23 miRNAs were found to be specifically expressed in cells from TG cattle.
View Article and Find Full Text PDFTo comparatively analyze the human microRNA (miRNA) profiles between spontaneous decidualized menstrual endometrium and early pregnancy decidua by an in-depth sequencing of miRNAs. The specific miRNAs expressed at conception might be involved in pregnancy establishment and expression of let-7f-5p and let-7g-5p was experimentally up-regulated or inhibited to assess the effect on the expression of IGF2BP-1 and IGF2R in vitro, respectively. Samples of endometria and deciduas were obtained from 25 women who suffered from tubal or male factor subfertility and from 35 early pregnant women who underwent pregnancy termination at 6-8 weeks gestation were irrespectively collected and comparatively analyzed by miRNA sequencing and differential expression of known and novel miRNAs was analyzed using bioinformatics.
View Article and Find Full Text PDFObjective: To comparatively analyze the human microRNAomes between normal pregnant and miscarriage deciduas by an in-depth sequencing of microRNA (miRNA); and to specifically examine miRNA-199b-5p and serum/glucocorticoid regulated kinase 1 (SGK1) in vivo and in vitro for their possible roles in pregnancy maintenance.
Design: Samples of deciduas from 6-8-week spontaneous miscarriages and normal pregnant women were irrespectively collected and comparatively analyzed by miRNA sequencing. The miR-199b-5p and SGK1 expressions were validated in vivo and in vitro.
RNA triphosphatase catalyzes the first step in mRNA capping. The RNA triphosphatases of fungi and protozoa are structurally and mechanistically unrelated to the analogous mammalian enzyme, a situation that recommends RNA triphosphatase as an anti-infective target. Fungal and protozoan RNA triphosphatases belong to a family of metal-dependent phosphohydrolases exemplified by yeast Cet1.
View Article and Find Full Text PDFDNA double-strand breaks (DSBs) can be repaired either via homologous recombination (HR) or nonhomologous end-joining (NHEJ). Both pathways are operative in eukaryotes, but bacteria had been thought to rely on HR alone. Here we provide direct evidence that mycobacteria have a robust NHEJ pathway that requires Ku and a specialized polyfunctional ATP-dependent DNA ligase (LigD).
View Article and Find Full Text PDFMycobacterium tuberculosis encodes an NAD(+)-dependent DNA ligase (LigA) plus three distinct ATP-dependent ligase homologs (LigB, LigC, and LigD). Here we purify and characterize the multiple DNA ligase enzymes of mycobacteria and probe genetically whether the ATP-dependent ligases are required for growth of M. tuberculosis.
View Article and Find Full Text PDFTrypanosoma brucei RNA triphosphatase TbCet1 is a 252-amino acid polypeptide that catalyzes the first step in mRNA cap formation. By performing an alanine scan of TbCet1, we identified six amino acids that are essential for triphosphatase activity (Glu-52, Arg-127, Glu-168, Arg-186, Glu-216, and Glu-218). These results consolidate the proposal that protozoan, fungal, and Chlorella virus RNA triphosphatases belong to a single family of metal-dependent NTP phosphohydrolases with a unique tunnel active site composed of eight beta strands.
View Article and Find Full Text PDFThe RNA triphosphatase component of vaccinia virus mRNA capping enzyme (the product of the viral D1 gene) belongs to a family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi, protozoa, Chlorella virus, and baculoviruses. The family is defined by two glutamate-containing motifs (A and C) that form the metal-binding site. Most of the family members resemble the fungal and Chlorella virus enzymes, which have a complex active site located within the hydrophilic interior of a topologically closed eight-stranded beta barrel (the so-called "triphosphate tunnel").
View Article and Find Full Text PDFChlorella virus RNA triphosphatase (cvRtp1) is the smallest member of a family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi, protozoa, poxviruses, and baculoviruses. The primary structure of cvRtp1 is more similar to that of the yeast RNA triphosphatase Cet1 than it is to the RNA triphosphatases of other DNA viruses. To evaluate the higher order structural similarities between cvRtp1 and the fungal enzymes, we performed an alanine scan of individual residues of cvRtp1 that were predicted, on the basis of the crystal structure of Cet1, to be located at or near the active site.
View Article and Find Full Text PDF