It is well known that welding dissimilar metals can play the advantages and characteristics of those different metals, but it is easy to encounter some problems. In this paper, the thermomechanical behavior of the weldolet-branch dissimilar steel joints in different welding cases is analyzed by establishing a three-dimensional finite element model, and the predicted thermal cycling and residual stresses are verified using experimental tools. The results show that the high temperature area and the heat affected zone on the side of the branch pipe are larger, and there is a large stress gradient at the fusion line on both sides of the weld.
View Article and Find Full Text PDFIn this paper, based on Simufact Welding finite element analysis software, a numerical simulation of the temperature and residual stress distribution of the weldolet-header multi-layer multi-pass welding process is carried out, and the simulation results are verified through experiments. The experimental results are in good agreement with the numerical simulation results, which proves the validity of the numerical simulation results. Through the results of the numerical simulation, the influence of the welding sequence and interlayer temperature on the temperature and residual stress distribution at different locations of the saddle-shaped weld was studied.
View Article and Find Full Text PDF