Severe asthma and sinus disease are consequences of type 2 inflammation (T2I), mediated by interleukin (IL)-33 signaling through its membrane-bound receptor, ST2. Soluble (s)ST2 reduces available IL-33 and limits T2I, but little is known about its regulation. We demonstrate that prostaglandin E (PGE) drives production of sST2 to limit features of lung T2I.
View Article and Find Full Text PDFBackground: Aspirin-exacerbated respiratory disease (AERD) is a severe disease involving dysregulated type 2 inflammation. However, the role other inflammatory pathways play in AERD is poorly understood.
Objective: We sought to broadly define the inflammatory milieu of the upper respiratory tract in AERD and to determine the effects of IL-4Rα inhibition on mediators of nasal inflammation.
Objective: We aimed to investigate the progression of cortical development in Chinese population and to determine the rate of isolated asymmetric cortical development. We also explored the outcomes of these fetuses and determined whether cortical asymmetry represents normal individual physiological variation.
Methods: Our observational cohort study included 456 healthy singleton pregnant women who visited Peking University First Hospital between September 2020 and December 2021.
Gas chromatography-mass spectrometry (GC-MS) is the first choice for law enforcement agencies in various countries to analyze new psychoactive substances (NPS) because of its advantages and complete databases. For synthetic cathinone-type NPS (SCat), alkalization and extraction processes before GC-MS analysis are essential. However, the base form of SCat is unstable, causing it to quickly degrade in solution and cause pyrolysis at the GC-MS injection inlet.
View Article and Find Full Text PDFObjectives: To explore the pregnancy outcomes of fetuses with increased NT thickness.
Methods: This was a retrospective study of fetuses with increased NT (≥95th centile) at 11-14 weeks of gestation between January 2020 and November 2020.
Results: Among 264 fetuses with increased NT, the median of CRL and NT was 61.
Background: Aspirin-exacerbated respiratory disease (AERD) is the triad of asthma, nasal polyposis, and respiratory reactions to COX-1 inhibitors. Overproduction of cysteinyl leukotrienes and underproduction of prostaglandin E (PGE) are hallmarks of AERD. A mouse model predicted a key role for the thromboxane-prostanoid (TP) receptor in AERD.
View Article and Find Full Text PDFFibulin-5 is reportedly involved in the pathological process of atherosclerosis (AS) where low expression has been frequently observed in ruptured atherosclerotic plaques. The aim of the present study was to determine the effects of fibulin-5 on the responses of vascular smooth muscle cells (VSMC) to oxidized low-density lipoprotein (ox-LDL). The expression of fibulin-5 was studied in human aortic-VSMCs (HA-VSMCs) treated with ox-LDL.
View Article and Find Full Text PDFIn this work, 1-[(2″-fluorophenyl)(methylimino)methyl]cyclopentan-1-ol (2-fluorodeschlorohydroxylimine) was identified as a suspected chemical precursor of 2-fluorodeschloroketamine (2-FDCK) using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-quadrupole/time-of-flight mass spectrometry (GC-Q/TOF-MS) and comparing the data with those of ketamine and its chemical precursor, hydroxylimine. Furthermore, the entire fragmentation pathway of 2-fluorodeschlorohydroxylimine was theorized from the GC-MS spectrum recorded using an electron ionization (EI) source, and the mechanisms and decomposition pathways of 2-fluorodeschlorohydroxylimine were elucidated. In protic solvents, the nitrogen atom in the C═N group of 2-fluorodeschlorohydroxylimine underwent a protonation reaction.
View Article and Find Full Text PDFMast cells (MCs) play a pathobiologic role in type 2 (T2) allergic inflammatory diseases of the airway, including asthma and chronic rhinosinusitis with nasal polyposis (CRSwNP). Distinct MC subsets infiltrate the airway mucosa in T2 disease, including subepithelial MCs expressing the proteases tryptase and chymase (MC) and epithelial MCs expressing tryptase without chymase (MC). However, mechanisms underlying MC expansion and the transcriptional programs underlying their heterogeneity are poorly understood.
View Article and Find Full Text PDFJ Allergy Clin Immunol
July 2021
Background: The 3 cysteinyl leukotrienes (cysLTs), leukotriene (LT) C (LTC), LTD, and LTE, have different biologic half-lives, cellular targets, and receptor specificities. CysLTR binds LTC and LTDin vitro with similar affinities, but it displays a marked selectivity for LTCin vivo. LTC, but not LTD, strongly potentiates allergen-induced pulmonary eosinophilia in mice through a CysLTR-mediated, platelet- and IL-33-dependent pathway.
View Article and Find Full Text PDFCysteinyl leukotrienes (cysLTs) facilitate eosinophilic mucosal type 2 immunopathology, especially in aspirin-exacerbated respiratory disease (AERD), by incompletely understood mechanisms. We now demonstrate that platelets, activated through the type 2 cysLT receptor (CysLTR), cause IL-33-dependent immunopathology through a rapidly inducible mechanism requiring the actions of high mobility box 1 (HMGB1) and the receptor for advanced glycation end products (RAGE). Leukotriene C (LTC) induces surface HMGB1 expression by mouse platelets in a CysLTR-dependent manner.
View Article and Find Full Text PDFCysteinyl leukotrienes (cysLTs) facilitate mucosal type 2 immunopathology by incompletely understood mechanisms. Aspirin-exacerbated respiratory disease, a severe asthma subtype, is characterized by exaggerated eosinophilic respiratory inflammation and reactions to aspirin, each involving the marked overproduction of cysLTs. Here we demonstrate that the type 2 cysLT receptor (CysLTR), which is not targeted by available drugs, is required in two different models to amplify eosinophilic airway inflammation via induced expression of IL-33 by lung epithelial cells.
View Article and Find Full Text PDFBackground: Prostaglandin (PG) D2 is the dominant COX product of mast cells and is an effector of aspirin-induced respiratory reactions in patients with aspirin-exacerbated respiratory disease (AERD).
Objective: We evaluated the role of the innate cytokine thymic stromal lymphopoietin (TSLP) acting on mast cells to generate PGD2 and facilitate tissue eosinophilia and nasal polyposis in patients with AERD.
Methods: Urinary eicosanoid levels were measured in aspirin-tolerant control subjects and patients with AERD.
Aspirin-exacerbated respiratory disease (AERD), a severe eosinophilic inflammatory disorder of the airways, involves overproduction of cysteinyl leukotrienes (cysLTs), activation of airway mast cells (MCs), and bronchoconstriction in response to nonselective cyclooxygenase inhibitors that deplete homeostatic PGE2. The mechanistic basis for MC activation in this disorder is unknown. We now demonstrate that patients with AERD have markedly increased epithelial expression of the alarmin-like cytokine IL-33 in nasal polyps, as compared with polyps from aspirin-tolerant control subjects.
View Article and Find Full Text PDFCysteinyl leukotrienes (cysLTs) are bronchoconstricting lipid mediators that amplify eosinophilic airway inflammation by incompletely understood mechanisms. We recently found that LTC4, the parent cysLT, potently activates platelets in vitro and induces airway eosinophilia in allergen-sensitized and -challenged mice by a platelet- and type 2 cysLT receptor-dependent pathway. We now demonstrate that this pathway requires production of thromboxane A2 and signaling through both hematopoietic and lung tissue-associated T prostanoid (TP) receptors.
View Article and Find Full Text PDFBackground: Aspirin-exacerbated respiratory disease (AERD) is an inflammatory condition of the respiratory tract and is characterized by overproduction of leukotrienes (LT) and large numbers of circulating granulocyte-platelet complexes. LT production can be suppressed by prostaglandin E(2) (PGE(2)) and the cyclic AMP-dependent protein kinase A (PKA).
Objective: To determine if PGE(2)-dependent control of LT production by granulocytes is dysregulated in AERD.
Leukotriene C4 (LTC4) and its extracellular metabolites, LTD4 and LTE4, mediate airway inflammation. They signal through three specific receptors (type 1 cys-LT receptor [CysLT1R], CysLT2R, and GPR99) with overlapping ligand preferences. In this article, we demonstrate that LTC4, but not LTD4 or LTE4, activates mouse platelets exclusively through CysLT2R.
View Article and Find Full Text PDFProstaglandin E(2) (PGE(2)) is an abundant lipid inflammatory mediator with potent but incompletely understood anti-inflammatory actions in the lung. Deficient PGE(2) generation in the lung predisposes to airway hyperresponsiveness and aspirin intolerance in asthmatic individuals. PGE(2)-deficient ptges(-/-) mice develop exaggerated pulmonary eosinophilia and pulmonary arteriolar smooth-muscle hyperplasia compared with PGE(2)-sufficient controls when challenged intranasally with a house dust mite extract.
View Article and Find Full Text PDFBackground: Studies of human mast cells (MCs) are constrained by the paucity of functional cell lines, the expense of maintaining MCs in culture, and technical complexities.
Objective: We derived and characterized a human MC line that arose spontaneously from a culture of nontransformed hematopoietic progenitor cells.
Methods: CD34(+) enriched mononuclear cells derived from a donor with aspirin-exacerbated respiratory disease were cultured for 8 weeks with stem cell factor and IL-6 and with IL-3 for the first week only.
Nonselective inhibition of PG synthesis augments inflammation in mouse models of airway disease, but the roles of individual PGs are not completely clarified. To investigate the role of PGE(2) in a mouse model of airway inflammation induced by a natural allergen, we used mice lacking the critical terminal synthetic enzyme, microsomal PGE(2) synthase (mPGES)-1. Mice lacking mPGES-1 (ptges(-/-) mice) and wild-type C57BL/6 controls were challenged intranasally with low doses of an extract derived from the house dust mite Dermatophagoides farinae (Der f).
View Article and Find Full Text PDFOf the potent lipid inflammatory mediators comprising the cysteinyl leukotrienes (LTs; LTC4, LTD4, and LTE4), only LTE4 is stable and abundant in vivo. Although LTE4 shows negligible activity at the type 1 and 2 receptors for cys-LTs (CysLT1R and CysLT2R), it is a powerful inducer of mucosal eosinophilia and airway hyperresponsiveness in humans with asthma. We show that the adenosine diphosphate (ADP)-reactive purinergic (P2Y12) receptor is required for LTE4-mediated pulmonary inflammation.
View Article and Find Full Text PDFCysteinyl leukotrienes (cys-LTs) are potent inflammatory lipid mediators, of which leukotriene (LT) E(4) is the most stable and abundant in vivo. Although only a weak agonist of established G protein-coupled receptors (GPCRs) for cys-LTs, LTE(4) potentiates airway hyper-responsiveness (AHR) by a cyclooxygenase (COX)-dependent mechanism and induces bronchial eosinophilia. We now report that LTE(4) activates human mast cells (MCs) by a pathway involving cooperation between an MK571-sensitive GPCR and peroxisome proliferator-activated receptor (PPAR)gamma, a nuclear receptor for dietary lipids.
View Article and Find Full Text PDFProstaglandin E2 (PGE2) blocks mast-cell (MC)-dependent allergic responses in humans but activates MCs in vitro. We assessed the functions of the EP receptors for PGE2 on cultured human MCs (hMCs). hMCs expressed the EP3, EP2, and EP4 receptors.
View Article and Find Full Text PDFATP and ADP activate functionally distinct G protein-coupled purinergic (P2Y) receptors. We determined the expression and function of adenine nucleotide-specific P2Y receptors on cord blood-derived human mast cells (hMCs). Human MCs expressed mRNA encoding the ADP-specific P2Y1, P2Y12, and P2Y13 receptors; the ATP/UTP-specific P2Y2 receptor; and the ATP-selective P2Y11 receptor.
View Article and Find Full Text PDF