Publications by authors named "Chunle Xiong"

The ability to generate complex optical photon states involving entanglement between multiple optical modes is not only critical to advancing our understanding of quantum mechanics but will play a key role in generating many applications in quantum technologies. These include quantum communications, computation, imaging, microscopy and many other novel technologies that are constantly being proposed. However, approaches to generating parallel multiple, customisable bi- and multi-entangled quantum bits (qubits) on a chip are still in the early stages of development.

View Article and Find Full Text PDF

Time-bin entangled photons allow robust entanglement distribution over quantum networks. Integrated photonic circuits positioned at the nodes of a quantum network can perform the important functions of generating highly entangled photons and precisely manipulating their quantum state. In this Letter, we demonstrate time-bin entangled photon generation, noise suppression, wavelength division, and entanglement analysis on a single photonic chip utilizing low-loss double-stripe silicon nitride waveguide structures.

View Article and Find Full Text PDF

Integrated single-photon sources are a key component for photonic quantum technology but are generally limited to low single-photon rates. For sources based on photon pair generation by four-wave mixing, increasing the repetition rate of pump laser pulses is a straightforward way to enhance the single-photon rate, but the benefits and practical limitations have not yet been demonstrated and analyzed in a CMOS-compatible platform. In this work, we demonstrate correlated photon pair generation in integrated silicon nanowires and systematically analyze the count rate and coincidence to accidental ratio as the pump rate is varied between 156.

View Article and Find Full Text PDF

We demonstrate optical frequency conversion between telecom wavelengths using four-wave mixing Bragg scattering powered by two pump pulses polarized on orthogonal axes of a silicon waveguide. This allows conversion in a single frequency direction while, with co-polarized pumps, the signal is redshifted or blueshifted with similar efficiency. Our approach exploits the birefringence of the waveguide and its effect on the phase matching of the four-wave mixing process.

View Article and Find Full Text PDF

Accurate temperature control is crucial for the reliable operation of photonic integrated circuits in the presence of internal thermal crosstalk or external thermal disturbance. We propose an adaptive multiple-input and multiple-output (MIMO) control scheme to stabilize the operation wavelength of on-chip wavelength demultiplexers that have many applications in photonic-chip-based optical signal processing. Using the MIMO control scheme, the wavelength drift is reduced from 0.

View Article and Find Full Text PDF

We present a novel measurement technique to perform full phase-sensitive tomography on the joint spectrum of photon pair sources, using stimulated four-wave mixing and phase-sensitive amplification. Applying this method to an integrated silicon nanowire source with a frequency chirped pump laser, we are able to observe a corresponding phase change in the spectral amplitude that would otherwise be hidden in standard intensity measurements. With a highly nonlinear fiber source, we show that phase-sensitive measurements have superior sensitivity to small spectral features when compared to intensity measurements.

View Article and Find Full Text PDF

Quantum communication networks require single photon frequency converters, whether to shift photons between wavelength channels, to shift photons to the operating wavelength of a quantum memory, or to shift photons of different wavelengths to be of the same wavelength, to enable a quantum interference. Here, we demonstrate frequency conversion of laser pulses attenuated to the single photon regime in an integrated silicon-on-insulator device using four-wave mixing Bragg scattering, with conversion efficiencies of up to 12%, or 32% after correcting for nonlinear loss created by the pump lasers. The frequency shift can be conveniently chosen by tuning of the pump frequencies.

View Article and Find Full Text PDF

The growing requirement for photon pairs with specific spectral correlations in quantum optics experiments has created a demand for fast, high resolution and accurate source characterisation. A promising tool for such characterisation uses classical stimulated processes, in which an additional seed laser stimulates photon generation yielding much higher count rates, as recently demonstrated for a χ(2) integrated source in A. Eckstein et al.

View Article and Find Full Text PDF

We demonstrate degenerate, correlated photon-pair generation via slow-light-enhanced spontaneous four-wave mixing in a 96 μm long silicon photonic crystal waveguide. Our device represents a more than 50 times smaller footprint than silicon nanowires. We have achieved a coincidence-to-accidental ratio as high as 47 at a photon generation rate of 0.

View Article and Find Full Text PDF

We demonstrate a sub-centimeter spatial resolution fiber-based distributed temperature sensor with enhanced measurement accuracy and reduced acquisition time. Our approach employs time domain analysis of backscattered Stokes and anti-Stokes photons generated via spontaneous Raman scattering in a chalcogenide (ChG) As2S3 fiber for temperature monitoring. The sensor performance is significantly improved by exploiting the high Raman coefficient and increased refractive index of the ChG fiber.

View Article and Find Full Text PDF

We classically measure the entire propagation matrix of a few-mode fiber and use a spatial light modulator to undo modal mixing and recover single-photons launched onto each of the eigenmodes of the fiber at one end, but arriving as mixed modal superpositions at the other. We exploit the orthogonality of these modal channels to improve the isolation between a quantum and classical channel launched onto different spatial and polarization modes at different wavelengths. The spatial diversity of the channels provides an additional 35dB of isolation in addition to that provided by polarization and wavelength.

View Article and Find Full Text PDF

The ability to use coherent light for material science and applications is linked to our ability to measure short optical pulses. While free-space optical methods are well established, achieving this on a chip would offer the greatest benefit in footprint, performance and cost, and allow the integration with complementary signal-processing devices. A key goal is to achieve operation at sub-watt peak power levels and on sub-picosecond timescales.

View Article and Find Full Text PDF

Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes.

View Article and Find Full Text PDF

In this Letter we demonstrate frequency conversion in the single-photon regime through Bragg-scattering four-wave mixing with near-unit efficiency in a 750 m long commercially available dispersion-engineered highly nonlinear fiber, where all photons and pump laser frequencies are in the low-loss telecommunications band. We achieve 99.1%±4.

View Article and Find Full Text PDF

In this Letter we demonstrate heralded single-photon generation in a III-V semiconductor photonic crystal platform through spontaneous four-wave mixing. We achieve a high brightness of 3.4×10(7) pairs·s(-1) nm(-1) W(-1) facilitated through dispersion engineering and the suppression of two-photon absorption in the gallium indium phosphide material.

View Article and Find Full Text PDF

We demonstrate low Raman-noise correlated photon-pair generation in a dispersion-engineered 10 mm As2S3 chalcogenide waveguide at room temperature. We show a coincidence-to-accidental ratio (CAR) of 16.8, a 250 times increase compared with previously published results in a chalcogenide waveguide, with a corresponding brightness of 3×10(5) pairs·s(-1)·nm(-1) generated at the chip.

View Article and Find Full Text PDF

We propose a continuous wave dual-wavelength-pumped scheme for visible supercontinuum (SC) generation. The scheme is numerically studied in this paper. In the scheme, the dual-wavelength pump source is produced through a four-wave mixing process in a photonic crystal fiber.

View Article and Find Full Text PDF

We demonstrate on-chip all-optical pulse erasure based on four-wave mixing and cross-phase modulation in a dispersion engineered chalcogenide (As(2)S(3)) rib waveguide. We achieve an erasure efficiency of ~15 dB for picosecond pulses in good agreement with numerical simulations using the nonlinear Schrödinger equation. The combined effect of the high instantaneous optical nonlinearity (γ = 9900 (W km)(-1)) and small group-velocity dispersion (D = 29 ps/nm km), which reduces pulse walk-off, will enable all-optical pulse erasure for ultrafast signal processing.

View Article and Find Full Text PDF