The treatment of spent cemented carbides using the conventional alkali-acid leaching process results in the generation of hazardous solid waste tungsten leaching residue. This study proposed an alternative process using the alkali-treated tungsten leaching residue (AW-residue) without the acid leaching step, preserving Co in the residue. By using photovoltaic silicon kerf waste (SKW) as a reducing agent, heavy metals (Co, Ni, W, Nb, and Ta) were efficiently extracted from AW-residue and a Co-rich alloy was obtained.
View Article and Find Full Text PDFSolid waste challenges in both the tungsten and photovoltaic industries present significant barriers to achieving carbon neutrality. This study introduces an innovative strategy for the efficient extraction of valuable metals from hazardous tungsten leaching residue (W-residue) by leveraging photovoltaic silicon kerf waste (SKW) as a silicothermic reducing agent. W-residue contains 26.
View Article and Find Full Text PDFColorectal cancer (CRC) is the fourth most common cancer and the second leading cause of cancer-associated mortality in Western countries. CRC treatment is dependent on the preoperative and postoperative condition of patients. At present, the prognostic value of conventional parameters for the estimation of patient prognosis is limited.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is one of the most common cancers worldwide. miR-34 induces changes of its downstream genes, and plays a key role in altering the apoptotic cycle and pathways of downstream cells, and finally influences the development of cancer. We assessed the relationship of the rs4938723 polymorphism with hepatocellular carcinoma risk in a Chinese population.
View Article and Find Full Text PDFMouse parthenogenetic embryonic stem cells (PgESCs) could be applied to study imprinting genes and are used in cell therapy. Our previous study found that stem cells established by aggregation of two parthenogenetic embryos at 8-cell stage (named as a2 PgESCs) had a higher efficiency than that of PgESCs, and the paternal expressed imprinting genes were observably upregulated. Therefore, we propose that increasing the number of parthenogenetic embryos in aggregation may improve the development of parthenogenetic mouse and imprinting gene expression of PgESCs.
View Article and Find Full Text PDFPig pluripotent cells may represent an advantageous experimental tool for developing therapeutic application in the human biomedical field. However, it has previously been proven to be difficult to establish from the early embryo and its pluripotency has not been distinctly documented. In recent years, induced pluripotent stem (iPS) cell technology provides a new method of reprogramming somatic cells to pluripotent state.
View Article and Find Full Text PDFParthenogenetic embryonic stem cells (PgES) might advance cell replacement therapies and provide a valuable in vitro model system to study the genomic imprinting. However, the differential potential of PgES cells was limited. It could result from relative low heterology of PgES cells compared with ES cells from fertilization (fES), which produce different expression of most imprinted genes.
View Article and Find Full Text PDF