This study introduces an advanced approach for assessing the damage state of charge-coupled devices (CCDs) caused by laser interactions, leveraging a multi-source and multi-feature information fusion technique. We established an experimental system that simulates laser damage on CCDs and collects diverse data types including echo information from active laser detection based on the 'cat's eye' effect, plasma flash data, and surface image characteristics of the CCD. A probabilistic neural network (PNN) was utilized to integrate these data sources effectively.
View Article and Find Full Text PDFRandom lasers (RLs) are a kind of coherent light source with optical feedback based on disorder-induced multiple scattering effects instead of a specific cavity. The unique feedback mechanism makes RLs different from conventional lasers. They have the advantages of small volume, flexible shape, omnidirectional emission, etc.
View Article and Find Full Text PDFWe design an efficient optically controlled microdevice based on CdSe nanoplates. Two-dimensional CdSe nanoplates exhibit lighting patterns around the edges and can be realized as a new type of optically controlled programmable encoder. The light source is used to excite the nanoplates and control the logical position under vertical pumping mode by the objective lens.
View Article and Find Full Text PDFBased on a silica sol-gel technique, highly-structurally ordered silica photonic structures were fabricated by UV lithography and hot manual nanoimprint efforts, which makes large-scale fabrication of silica photonic crystals easy and results in low-cost. These photonic structures show perfect periodicity, smooth and flat surfaces and consistent aspect ratios, which are checked by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, glass substrates with imprinted photonic nanostructures show good diffraction performance in both transmission and reflection mode.
View Article and Find Full Text PDFAn encryption and verification method with multiple encrypted keys based on interference principle is proposed. The encryption process is realized on computer digitally and the verification process can be completed optically or digitally. Two different images are encoded into three diffractive phase elements (DPEs) by using two different incident wavelengths.
View Article and Find Full Text PDF