Prolonging the residence time of drugs in the lumen and propelling them into deep lesions are highly desired for intraluminal drug administration. However, rapid drug efflux caused by dynamic intraluminal contents limits sustained drug concentrations, causing poor pharmaceutical absorption and reduced efficacy. Here, we combined theory and experiments to demonstrate a distinctive drug delivery strategy using clinically available medical ultrasound technology.
View Article and Find Full Text PDFThe utilization of alkyl radicals (•R) for hypoxic tumor therapy has great prospects due to its O-independence and high reactivity. However, correlational initiators for activation remain scarce. Here, we report that ultrasound excitation of oleic acid-capped BaTiO (OA@BaTiO) can result in an •R cascade and hence a means to conquer hypoxic tumors.
View Article and Find Full Text PDFMachine learning (ML) coupled with quantum chemistry calculations predicts catalyst properties with high accuracy; however, ML approaches in the design of multicomponent catalysts primarily rely on simulation data because obtaining sufficient experimental data in a short time is difficult. Herein, we developed a rapid screening strategy involving nanodroplet-mediated electrodeposition using a carbon nanocorn electrode as the support substrate that enables complete data collection for training artificial intelligence networks in one week. The inert support substrate ensures intrinsic activity measurement and characterization of the irreversible reconstruction of multinary alloy particles during the oxygen evolution reaction.
View Article and Find Full Text PDFAdv Healthc Mater
November 2023
Hydroxyl radical ( OH) as a highly oxidizing reactive oxygen species can induce immunogenic cell death (ICD) in cancer treatment. However, high-efficiency cancer immunotherapy is still a huge challenge due to the low OH generation efficiency in the tumor microenvironment, resulting in insufficient immunogenicity and the poor immune response. Here, a near-infrared (NIR) light-enhanced OH generation strategy is developed for cancer immunotherapy by using a copper-based metal-organic framework (Cu-DBC) nanoplatform.
View Article and Find Full Text PDFPd-catalyzed chemistry has played a significant role in the growing subfield of bioorthogonal catalysis. However, rationally designing Pd nanocatalysts that show outstanding catalytic activity and good biocompatibility poses a great challenge. Herein, we propose an innovative strategy through exploiting black phosphorous nanosheets (BPNSs) to enhance Pd-mediated bioorthogonal catalytic activity.
View Article and Find Full Text PDFThe antioxidant system of tumor cells severely impairs reactive oxygen species (ROS)-mediated tumor therapy. Despite extensive attempts to attenuate the antioxidant capacity by eliminating ROS scavengers such as glutathione (GSH), nicotinamide adenine dinucleotide phosphate (NADPH) over-expressed in the tumor microenvironment can regenerate GSH from glutathione disulfide (GSSG), hence weakening ROS-induced oxidative damage. Therefore, engineering a nanoplatform capable of depleting both NADPH and GSH is extremely significant for improving ROS-mediated tumor treatment.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2023
The disorder of amino acid metabolism and the abuse of small molecule drugs pose serious threats to public health. However, due to the limitations of existing detection technologies in sensing cinnamaldehyde (CAL) and l-Arginine/l-Lysine (l-Arg/l-Lys), there is an urgent need to develop new sensing strategies to meet the severe challenges currently facing. Herein, nitrogen-doped carbon dots (N-CDs) were developed using a simple one-pot hydrothermal carbonization method.
View Article and Find Full Text PDFCurrently, artificial enzymes-based photodynamic therapy (PDT) is attractive due to its efficient capacity to change the immunosuppressive tumor microenvironment (TME). It is of great significance to study the therapeutic mechanism of novel artificial enzymes in TME through a monitoring strategy and improve the therapeutic effect. In this study, Au@carbon dots (Au@CDs) nanohybrids with a core-shell structure are synthesized, which not only exhibit tunable enzyme-mimicking activity under near-infrared (NIR) light, but also excellent surface-enhanced Raman scattering (SERS) properties.
View Article and Find Full Text PDFDopamine hydrochloride (DH) and D-Glutamic acid (D-Glu) are important excitatory neurotransmitters, which are closely relative to central nervous system diseases. Therefore, it is critical to develop the sensitive and facile sensor to precisely monitor the changes of these neurotransmitters. Herein, the gadolinium-doped carbon dots (Gd-CDs) were synthesized by a low-cost and effortless one-pot solvothermal method.
View Article and Find Full Text PDFMitigating cellular resistance, which could enhance the sensitivity of tumor cells to treatment, is a promising approach for obtaining better therapeutic outcomes. However, the present designs of materials generally disregard this point, or only focus on a single specific resistance. Herein, a strategy based on a series of cascade reactions aiming to suppress multiple cellular resistances is designed by integrating photothermal and chemotherapy into a mitochondria targeted nanosystem (AuBPs@TD).
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2021
Mitochondria-targeted synergistic therapy, including photothermal (PTT) and photodynamic therapy (PDT), has aroused wide attention due to the high sensitivity to reactive oxygen species (ROS) and heat shock of mitochondria. However, most of the developed nanosystems for the combinatorial functions require the integration of different components, such as photosensitizers and mitochondria-targeted molecules. Consequently, it indispensably requires sophisticated design and complex synthetic procedures.
View Article and Find Full Text PDFPerusing redox nanozymes capable of disrupting cellular homeostasis offers new opportunities to develop cancer-specific therapy, but remains challenging, because most artificial enzymes lack enzyme-like scale and configuration. Herein, for the first time, we leverage a defect engineering strategy to develop a simple yet efficient redox nanozyme by constructing enzyme-mimicking active centers and investigated its formation and catalysis mechanism thoroughly. Specifically, the partial Fe doping in MoO (donated as Fe-MoO) was demonstrated to activate structure reconstruction with abundant defect site generation, including Fe substitution and oxygen vacancy (OV) defects, which significantly enable the binding capacity and catalytic activity of Fe-MoO nanozymes in a synergetic fashion.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2021
Tumor hypoxia severely limits the therapeutic effects of photodynamic therapy (PDT). Although many methods for oxygen generation exist, substantial safety concerns, spatiotenporal uncontrollability, limited efficacy, and complicated procedures have compromised their practical application. Here, we demonstrate a biocompatiable all-in-one organic semiconductor to provide a photoxidation catalysis mechanism of action.
View Article and Find Full Text PDFTheranostic nanoprobes can potentially integrate imaging and therapeutic capabilities into a single platform, offering a new personalized cancer diagnostic tool. However, there is a growing concern that their clinical application is not safe, particularly due to metal-containing elements, such as the gadolinium used in magnetic resonance imaging (MRI). We demonstrate for the first time that the photothermal melting of the DNA duplex helix was a reliable and versatile strategy that enables the on-demand degradation of the gadolinium-containing MRI reporter gene from polydopamine (PDA)-based theranostic nanoprobes.
View Article and Find Full Text PDFNanoagents achieving photodynamic therapy (PDT) and photothermal therapy (PTT) combination treatment with improved therapeutic effect are highly desirable. However, the incorporation of both PDT and PTT into a single nanoagent often requires multistep fabrication process. Herein, we report that photoactive porphyrin ligands have been successfully introduced into Zn-TCPP structure to construct the nanoagents that possesses photodynamic performance and photothermal performance simultaneously.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
May 2019
Intracellular targeting has the same potential as tissue targeting to increase therapy efficacy, especially for drugs that are toxic to DNA. By adjusting intracellular traffic, we developed a novel direct-nucleus-delivery platform based on C N nanoparticles (NPs). Supramolecular interactions of C N NPs with the cell membrane enhanced cell uptake; abundant edge amino groups promoted fast and effective rupture of early endosomes; and the appropriate size of the NPs was also crucial for size-dependent nuclear entry.
View Article and Find Full Text PDFAnal Bioanal Chem
July 2019
The failure of complete tumor resection during cancer surgery is a leading cause of lethal recurrence and metastasis. However, achieving accurate delineation of tumor margins intraoperatively remains extremely difficult because the infiltrated nature of a tumor usually gives an obscure margin and spreading microtumors. Recent studies show that surface-enhanced Raman scattering (SERS) has the potential to depict precisely the actual tumor extent with high sensitivity, specificity, and spatial resolution; thus providing a promising platform to improve the therapeutic efficiency.
View Article and Find Full Text PDFTitanium nitride, an alternative plasmonic material to gold with unique physiochemical properties, has been widely used in microelectronics, biomedical devices and food-contact applications. However, its potential application in the area of biomedicine has not been effectively explored. With the spectral match of their plasmon resonance band and the biological transparency window as well as good biocompatibility, titanium nitride nanoparticles (TiN NPs) are promising photoabsorbing agents for photothermal therapy (PTT) and photoacoustic imaging.
View Article and Find Full Text PDFThe timely diagnosis and intervention of bone microdamage are essential for preventing its accumulation and further diminishing the risk of skeletal fracture. Although staining methods have been adopted to better depict the microdamage on bone, their clinical impacts are still limited because they are based on histological sections which are inherently destructive. Here, highly sensitive and non-invasive in vivo detection of bone crack can be achieved by surface-enhanced Raman scattering (SERS) technique using a carefully chosen polydopamine (PDA)-SERS nanoparticle tag.
View Article and Find Full Text PDFUnlabelled: Near infrared light responsive nanoparticles can transfer the absorbed NIR optical energy into heat, offering a desirable platform for photoacoustic (PA) imaging guided photothermal therapy (PTT) of tumor. However, a key issue in exploiting this platform is to achieve optimal combination of PA imaging and PTT therapy in single nanoparticle. Here, we demonstrate that the biodegradable polydopamine nanoparticles (PDAs) are excellent PA imaging agent and highly efficient for PTT therapy, thus enabling the optimal combination of PA imaging and PTT therapy in single nanoparticle.
View Article and Find Full Text PDFAchieving high-resolution imaging of bone-cracks and even monitoring them in live organisms are of great significance for understanding their extreme biological effects but remain quite challenging, especially for adopting commercial imaging systems. Herein, we explore the use of the clinical gemstone spectral computed tomography (GSCT) technique as a powerful tool for targeted imaging of bone-cracks in rats via intramuscularly administrating crack-targeted ytterbium-based contrast agents (CAs). Material density images of GSCT reveal that bone-cracks targeted with CAs can be successfully differentiated from healthy bone based on their different X-ray attenuation characteristics, giving GSCT a distinct advantage over conventional CT.
View Article and Find Full Text PDFDeveloping non-precious metal electrocatalysts (NPMCs) for the oxygen reduction reaction (ORR) is of paramount importance for commercial implementation of several clean energy techniques (e.g. proton exchange membrane fuel cells).
View Article and Find Full Text PDFDespite the progress in the design and synthesis of theranostic agents, limitations on efficiency and safety offer significant room for improvement in these agents. Inspired by the natural binding ability of polydopamine nanospheres (PDAs) with iron ion, a simple and versatile synthesis strategy is developed to prepare biodegradable coordination polymer (CP) encapsulated PDAs nanocomplex (PDAs@CPx, x = 3, 6, 9). We found that the PDAs@CP3 can serve as a T1/T2 dual mode contrast agent (DMCA) for magnetic resonance imaging (MRI), which possesses high longitudinal (r1 = 7.
View Article and Find Full Text PDFChronic constipation is a common gastrointestinal disease severely affecting the patient׳s quality of life. The traditional treatment of constipation is the use of laxatives. Recently, several new drugs including lubiprostone, linaclotide and prucalopride have been approved for treatment of chronic constipation.
View Article and Find Full Text PDFLanthanide-based multimodal probes with high sensitivity, simple synthesis strategy, and good biocompatibility promise new applications for clinical diagnosis. However, today's challenge is not only to develop high-performance multimodal probes for more accurate and reliable diagnosis, but also to understand the fate of these probes in vivo. In this context, a novel PEGylated Dy-doped NaGdF4 nanoprobe (PEG-NaGdF4:Dy) was designed and fabricated as a T1/T2-weighted MRI/CT imaging agent.
View Article and Find Full Text PDF