Intracerebral hemorrhage (ICH) induces a complex sequence of apoptotic cascades and inflammatory responses, leading to neurological impairment. Transient receptor potential vanilloid 1 (TRPV1), a nonselective cation channel with high calcium permeability, has been implicated in neuronal apoptosis and inflammatory responses. This study used a mouse ICH model and neuronal cultures to examine whether TRPV1 activation exacerbates brain damage and neurological deficits by promoting neuronal apoptosis and neuroinflammation.
View Article and Find Full Text PDFDerlin family members participate in the retrotranslocation of endoplasmic reticulum (ER) lumen proteins to the cytosol for ER-associated degradation (ERAD); however, the proteins facilitating this retrotranslocation remain to be explored. Using CRISPR library screening, we have found that derlin-2 and surfeit locus protein 4 (Surf4) are candidates to facilitate degradation of cyclooxygenase-2 (COX-2, also known as PTGS2). Our results show that derlin-2 acts upstream of derlin-1 and that Surf4 acts downstream of derlin-2 and derlin-1 to facilitate COX-2 degradation.
View Article and Find Full Text PDFBackground: Intracerebral hemorrhage (ICH) is a condition associated with high morbidity and mortality, and glia-mediated inflammation is a major contributor to neurological deficits. However, there is currently no proven effective treatment for clinical ICH. Recently, low-intensity pulsed ultrasound (LIPUS), a non-invasive method, has shown potential for neuroprotection in neurodegenerative diseases.
View Article and Find Full Text PDFKnee osteoarthritis (KOA) is the leading cause of knee pain in middle-aged and older individuals. Extracorporeal shockwave therapy (ESWT) has been applied to treat patients with KOA to reduce pain and improve function. Patients (n = 123) diagnosed with KOA who received ESWT were selected to participate in this study, and were grouped according to their body mass index (BMI).
View Article and Find Full Text PDFThe repair of infected bone defects remains a clinical challenge. Staphylococcus aureus is a common pathogenic micro-organism associated with such infections. Gentamycin (GM) is a broad spectrum antibiotic that can kill S.
View Article and Find Full Text PDFIntrauterine growth restriction (IUGR) is a leading cause of perinatal mortality and morbidity, and IUGR survivors are at increased risk of neurodevelopmental deficits. No effective interventions are currently available to improve the structure and function of the IUGR brain before birth. This study investigated the protective effects of low-intensity pulsed ultrasound (LIPUS) on postnatal neurodevelopmental outcomes and brain injury using a rat model of IUGR induced by maternal exposure to dexamethasone (DEX).
View Article and Find Full Text PDFChorioamnionitis (CAM) is primarily a polymicrobial bacterial infection involving chorionic and amniotic membranes that is associated with increased risk of preterm delivery. Epoxyeicosatrienoic acids (EETs) are eicosanoids generated from arachidonic acid by cytochrome P450 enzymes and further metabolized mainly by soluble epoxide hydrolase (sEH) to produce dihydroxyeicosatrienoic acids (DHETs). As a consequence of this metabolism of EETs, sEH reportedly exacerbates several disease states; however, its role in CAM remains unclear.
View Article and Find Full Text PDFBackground: Intracerebral hemorrhage (ICH) induces a complex sequence of apoptotic cascades that contribute to secondary neuronal damage. Tropomyosin-related kinase receptor B (TrkB) signaling plays a crucial role in promoting neuronal survival following brain damage.
Methods: The present study investigated the protective effects and underlying mechanisms of TrkB activation by the specific TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF), in a model of collagenase-induced ICH and in neuronal cultures.
The purpose of this study was to assess the long-term treatment efficacy of low-intensity pulsed ultrasound (LIPUS) on functional outcomes, brain edema, and the possible involvement of reactions in mice following traumatic brain injury (TBI). Mice subjected to controlled cortical impact injury received LIPUS treatment daily for a period of 4 weeks. The effects of LIPUS on edema were detected by MR imaging in the mouse brain at 148 days following TBI.
View Article and Find Full Text PDFTraumatic brain injury (TBI) induces a series of inflammatory processes that contribute to neuronal damage. The present study investigated the involvement of soluble epoxide hydrolase (sEH) in neuroinflammation and brain damage in mouse TBI and in microglial cultures. The effects of genetic deletion of sEH and treatment with an sEH inhibitor, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), on brain damage and inflammatory responses were evaluated in mice subjected to controlled cortical impact.
View Article and Find Full Text PDFBackground: Inflammatory responses significantly contribute to neuronal damage and poor functional outcomes following intracerebral hemorrhage (ICH). Soluble epoxide hydrolase (sEH) is known to induce neuroinflammatory responses via degradation of anti-inflammatory epoxyeicosatrienoic acids (EET), and sEH is upregulated in response to brain injury. The present study investigated the involvement of sEH in ICH-induced neuroinflammation, brain damage, and functional deficits using a mouse ICH model and microglial cultures.
View Article and Find Full Text PDFThe purpose of this study was to investigate the neuroprotective effects of low-intensity pulsed ultrasound (LIPUS) on behavioral and histological outcomes in a mouse model of traumatic brain injury (TBI). Mice subjected to controlled cortical impact injury were treated with LIPUS in the injured region daily for a period of 4 weeks. The effects of LIPUS on edema were observed by MR imaging in the mouse brain at 1 and 4 days following TBI.
View Article and Find Full Text PDFBackground: The protein expressions of brain-derived neurotrophic factor (BDNF) can be elevated by transcranial ultrasound stimulation in the rat brain.
Objective: The purpose of this study was to investigate the effects and underlying mechanisms of BDNF enhancement by low-intensity pulsed ultrasound (LIPUS) on traumatic brain injury (TBI).
Methods: Mice subjected to controlled cortical impact injury were treated with LIPUS in the injured region daily for a period of 4 days.
Performing quantitative small-animal PET with an arterial input function has been considered technically challenging. Here, we introduce a catheterization procedure that keeps a rat physiologically stable for 1.5 mo.
View Article and Find Full Text PDFBackground: Intracerebral hemorrhage (ICH) induces a series of inflammatory processes that contribute to neuronal damage and neurological deterioration. Liver X receptors (LXRs) are nuclear receptors that negatively regulate transcriptional processes involved in inflammatory responses, but their role in the pathology following ICH remains unclear. The present study investigated the neuroprotective effects and anti-inflammatory actions of TO901317, a synthetic LXR agonist, in a model of collagenase-induced ICH and in microglial cultures.
View Article and Find Full Text PDFTraumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg(-1)) or vehicle 10 min after injury.
View Article and Find Full Text PDFTropomyosin-related kinase B (TrkB) signaling is critical for promoting neuronal survival following brain damage. The present study investigated the effects and underlying mechanisms of TrkB activation by the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) on traumatic brain injury (TBI). Mice subjected to controlled cortical impact received intraperitoneal 7,8-DHF or vehicle injection 10 min post-injury and subsequently daily for 3 days.
View Article and Find Full Text PDFCaveolin-1 (Cav-1) interacts with and mediates protein trafficking and various cellular functions. Derlin-1 is a candidate for the retrotranslocation channel of endoplasmic reticulum proteins. However, little is known about how Derlin-1 mediates glycosylated protein degradation.
View Article and Find Full Text PDFBackground: Traumatic brain injury (TBI) induces a complex sequence of apopototic cascades that contribute to secondary tissue damage. The aim of this study was to investigate the effects of salidroside, a phenolic glycoside with potent anti-apoptotic properties, on behavioral and histological outcomes, brain edema, and apoptosis following experimental TBI and the possible involvement of the phosphoinositide 3-kinase/protein kinase B (PI3K)/Akt signaling pathway.
Methodology/principal Findings: Mice subjected to controlled cortical impact injury received intraperitoneal salidroside (20, or 50 mg/kg) or vehicle injection 10 min after injury.