Efficiently synergistic therapy of hepatocellular carcinoma (HCC) by chemotherapeutic drug and photothermal agent remains a considerable challenge. Here, we report a nanodrug that integrates specific hepatoma-targeted delivery, pH-triggered drug release, and cooperative photothermal-chemotherapy function. By grafting the easily self-assembled CuS@polydopamine (CuS@PDA) nanocapsulation with polyacrylic acid (PAA), an inorganic-organic-polymeric hybrid nanovehicle was developed as a dual photothermal agent and carrier for loading antitumor drug-doxorubicin (DOX) through electrostatic adsorption and chemical linking antibody against GPC3 commonly overexpressed in HCC, resulting in the nanodrug, CuS@PDA/PAA/DOX/GPC3.
View Article and Find Full Text PDFHerein, we present the facile design and construction of a nanodrug system integrating targeted drug delivery and synergistic chemo-photothermal antitumor activity. MoS nanosheets were synthesized and modified by αβ integrin binding peptide (Arg-Gly-Asp, RGD) using lipoic acid functionalized polyethylene glycol (LA-PEG-COOH), forming a well dispersed and targeted delivery nanocarrier. Further, covalent coupling of antitumor drug, thiolated doxorubicin (DOX) via disulfide linkage resulted in a novel nanodrug, RGD/MoS/DOX.
View Article and Find Full Text PDFMeasuring glucose in a convenient and economical manner is crucial for diabetes diagnostics and surveillance. Ongoing efforts are devoted to nonenzymatic sensors using functional nanomaterials. Drawbacks due to costly and cumbersome process, however, hamper the practicality.
View Article and Find Full Text PDF