Publications by authors named "Chunhong Long"

In recent years, the photoelectric conversion efficiency of three-dimensional (3D) perovskites has seen significant improvements. However, the commercial application of 3D perovskites is hindered by stability issues and the toxicity of lead. Two-dimensional (2D) perovskites exhibit good stability but suffer from low efficiency.

View Article and Find Full Text PDF

Cas1 and Cas2 are highly conserved proteins among the clustered regularly interspaced short palindromic repeat Cas (CRISPR-Cas) systems and play a crucial role in protospacer selection and integration. According to the double-forked CRISPR Cas1-Cas2 complex, we conducted extensive all-atom molecular dynamics simulations to investigate the protospacer DNA binding and recognition. Our findings revealed that single-point amino acid mutations in Cas1 or in Cas2 had little impact on the binding of the protospacer, both in the binding and precatalytic states.

View Article and Find Full Text PDF

SARS-CoV-2 RNA dependent RNA polymerase (RdRp) serves as a highly promising antiviral drug target such as for a Remdesivir nucleotide analogue (RDV-TP or RTP). In this work, we mainly used alchemical all-atom simulations to characterize relative binding free energetics between the nucleotide analogue RTP and natural cognate substrate ATP upon initial binding and pre-catalytic insertion into the active site of SARS-CoV-2 RdRp. Natural non-cognate substrate dATP and mismatched GTP were also examined for computation control.

View Article and Find Full Text PDF

Cas1 and Cas2 are highly conserved proteins across clustered-regularly-interspaced-short-palindromic-repeat-Cas systems and play a significant role in protospacer acquisition. Based on crystal structure of twofold symmetric Cas1-Cas2 in complex with dual-forked protospacer DNA (psDNA), we conducted all-atom molecular dynamics simulations to study the psDNA binding, recognition, and response to cleavage on the protospacer-adjacent-motif complementary sequence, or PAMc, of Cas1-Cas2. In the simulation, we noticed that two active sites of Cas1 and Cas1' bind asymmetrically to two identical PAMc on the psDNA captured from the crystal structure.

View Article and Find Full Text PDF

Designing antiviral therapeutics is of great concern per current pandemics caused by novel coronavirus or SARS-CoV-2. The core polymerase enzyme in the viral replication/transcription machinery is generally conserved and serves well for drug target. In this work we briefly review structural biology and computational clues on representative single-subunit viral polymerases that are more or less connected with SARS-CoV-2 RNA dependent RNA polymerase (RdRp), in particular, to elucidate how nucleotide substrates and potential drug analogs are selected in the viral genome synthesis.

View Article and Find Full Text PDF

The anomalous nondipolar and nonaxisymmetric magnetic fields of Uranus and Neptune have long challenged conventional views of planetary dynamos. A thin-shell dynamo conjecture captures the observed phenomena but leaves unexplained the fundamental material basis and underlying mechanism. Here we report extensive quantum-mechanical calculations of polymorphism in the hydrogen-oxygen system at the pressures and temperatures of the deep interiors of these ice giant planets (to >600 GPa and 7,000 K).

View Article and Find Full Text PDF
Article Synopsis
  • GBPs are part of a GTPase family that helps cells fight off pathogens, but can be degraded by the IpaH9.8 protein from Shigella flexneri.
  • The study presents the structure of a shortened GBP1 complexed with the LRR domain of IpaH9.8, highlighting how this interaction affects the GTPase domain of GBP1.
  • Key structural differences in GBP1 and resilience in certain GBPs (like GBP3 and GBP7) to IpaH9.8 are noted, suggesting a broader mechanism of how IpaH proteins interact with GBPs and influencing their function.
View Article and Find Full Text PDF

RNA polymerase (RNAP) from bacteriophage T7 is a representative single-subunit viral RNAP that can transcribe with high promoter activities without assistances from transcription factors. We accordingly studied this small transcription machine computationally as a model system to understand underlying mechanisms of mechano-chemical coupling and fidelity control in the RNAP transcription elongation. Here we summarize our computational work from several recent publications to demonstrate first how T7 RNAP translocates via Brownian alike motions along DNA right after the catalytic product release.

View Article and Find Full Text PDF

An elongation cycle of a transcribing RNA polymerase (RNAP) usually consists of multiple kinetics steps, so there exist multiple kinetic checkpoints where non-cognate nucleotides can be selected against. We conducted comprehensive free energy calculations on various nucleotide insertions for viral T7 RNAP employing all-atom molecular dynamics simulations. By comparing insertion free energy profiles between the non-cognate nucleotide species (rGTP and dATP) and a cognate one (rATP), we obtained selection free energetics from the nucleotide pre-insertion to the insertion checkpoints, and further inferred the selection energetics down to the catalytic stage.

View Article and Find Full Text PDF

High fidelity gene transcription and replication require kinetic discrimination of nucleotide substrate species by RNA and DNA polymerases under chemical non-equilibrium conditions. It is known that sufficiently large free energy driving force is needed for each polymerization or elongation cycle to maintain far-from-equilibrium to achieve low error rates. Considering that each cycle consists of multiple kinetic steps with different transition rates, one expects that the kinetic modulations by polymerases are not evenly conducted at each step.

View Article and Find Full Text PDF