Publications by authors named "Chunhe Song"

Bearings are critical components of industrial equipment and have a significant impact on the safety of industrial physical systems. Their failure may lead to equipment shutdown and accidents, posing a significant risk to production safety. However, it is difficult to obtain a large amount of bearing fault data in practice, which makes the problem of small sample size a major challenge for bearing fault detection.

View Article and Find Full Text PDF

Surface defect detection is of great significance as a tool to ensure the quality of steel pipes. The surface defects of steel pipes are charactered by insufficient texture, high similarity between different types of defects, large size differences, and high proportions of small targets, posing great challenges to defect detection algorithms. To overcome the above issues, we propose a novel steel pipe surface defect detection method based on the YOLO framework.

View Article and Find Full Text PDF

The robot task sequencing problem and trajectory planning problem are two important issues in the robotic optimization domain and are solved sequentially in two separate levels in traditional studies. This paradigm disregards the potential synergistic impact between the two problems, resulting in a local optimum solution. To address this problem, this paper formulates a co-optimization model that integrates the task sequencing problem and trajectory planning problem into a holistic problem, abbreviated as the robot TSTP problem.

View Article and Find Full Text PDF

As an essential component of mechanical equipment, the fault diagnosis of rolling bearings may not only guarantee the systematic operation of the equipment, but also minimize any financial losses caused by equipment shutdowns. Fault diagnosis algorithms based on convolutional neural networks (CNN) have been widely used. However, traditional CNNs have limited feature representation capabilities, thereby making it challenging to determine their hyperparameters.

View Article and Find Full Text PDF
Article Synopsis
  • Automatically detecting mental workload is crucial for preventing mental diseases, and advancements in technology like AI and IoT enable remote detection through physiological signals.
  • The article proposes a method that analyzes electroencephalography (EEG) signals by examining both spatial features from different brain regions and time-frequency information using wavelet transforms.
  • A hybrid deep learning model processes these features to classify mental workload more accurately, demonstrating improved performance against existing methods when validated with a public database.
View Article and Find Full Text PDF

Filter pruning is widely used for inference acceleration and compatibility with off-the-shelf hardware devices. Some filter pruning methods have proposed various criteria to approximate the importance of filters, and then sort the filters globally or locally to prune the redundant parameters. However, the current criterion-based methods have problems: (1) parameters with smaller criterion values for extracting edge features are easily ignored, and (2) there is a strong correlation between different criteria, resulting in similar pruning structures.

View Article and Find Full Text PDF

The rapid development of electric vehicle (EV) technology and the consequent charging demand have brought challenges to the stable operation of distribution networks (DNs). The problem of the collaborative optimization of the charging scheduling of EVs and voltage control of the DN is intractable because the uncertainties of both EVs and the DN need to be considered. In this paper, we propose a deep reinforcement learning (DRL) approach to coordinate EV charging scheduling and distribution network voltage control.

View Article and Find Full Text PDF

The increasingly large structure of neural networks makes it difficult to deploy on edge devices with limited computing resources. Network pruning has become one of the most successful model compression methods in recent years. Existing works typically compress models based on importance, removing unimportant filters.

View Article and Find Full Text PDF

Motion planning is one of the important research topics of robotics. As an improvement of Rapidly exploring Random Tree (RRT), the RRT* motion planning algorithm is widely used because of its asymptotic optimality. However, the running time of RRT* increases rapidly with the number of potential path vertices, resulting in slow convergence or even an inability to converge, which seriously reduces the performance and practical value of RRT*.

View Article and Find Full Text PDF

In the area of medical image segmentation, the spatial information can be further used to enhance the image segmentation performance. And the 3D convolution is mainly used to better utilize the spatial information. However, how to better utilize the spatial information in the 2D convolution is still a challenging task.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) syndrome is a common sleep disorder and a key cause of cardiovascular and cerebrovascular diseases that seriously affect the lives and health of people. The development of Internet of Medical Things (IoMT) has enabled the remote diagnosis of OSA. The physiological signals of human sleep are sent to the cloud or medical facilities through Internet of Things, after which diagnostic models are employed for OSA detection.

View Article and Find Full Text PDF

Automatically predicting cardiovascular and cerebrovascular events (CCEs) is a key technology that can prevent deaths and disabilities. Herein, we propose predicting CCE occurrences based on heart rate variability (HRV) analysis and a deep belief network (DBN). The proposed prediction algorithm uses eight novel HRV signal features, which are calculated based on the following steps.

View Article and Find Full Text PDF

With the development of deep learning methods such as convolutional neural network (CNN), the accuracy of automated pulmonary nodule detection has been greatly improved. However, the high computational and storage costs of the large-scale network have been a potential concern for the future widespread clinical application. In this paper, an alternative Multi-ringed (MR)-Forest framework, against the resource-consuming neural networks (NN)-based architectures, has been proposed for false positive reduction in pulmonary nodule detection, which consists of three steps.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) syndrome is a common sleep disorder. As an alternative to polysomnography (PSG) for OSA screening, the current automatic OSA detection methods mainly concentrate on feature extraction and classifier selection based on physiological signals. It has been reported that OSA is, along with autonomic nervous system (ANS) dysfunction and heart rate variability (HRV), a useful tool for ANS assessment.

View Article and Find Full Text PDF

The fuzzy degree of lung nodule boundary is the most important cue to judge the lung cancer in CT images. Based on this feature, the paper proposes a novel lung cancer detection method for CT images based on the super-pixels and the level set segmentation methods. In the proposed methods, the super-pixels method is used to segment the lung region and the suspected lung cancer lesion region in the CT image.

View Article and Find Full Text PDF