Advancements in ultrafast electron microscopy have allowed elucidation of spatially selective structural dynamics. However, as the spatial resolution and imaging capabilities have made progress, quantitative characterization of the electron pulse trains has not been reported at the same rate. In fact, inexperienced users have difficulty replicating the technique because only a few dedicated microscopes have been characterized thoroughly.
View Article and Find Full Text PDFThe development of ultrafast electron microscopy (UEM), specifically stroboscopic imaging, has brought the study of structural dynamics to a new level by overcoming the spatial limitations of ultrafast spectroscopy and the temporal restrictions of traditional TEM simultaneously. Combining the concepts governing both techniques has enabled direct visualization of dynamics with spatiotemporal resolutions in the picosecond-nanometer regime. Here, we push the limits of imaging using a pulsed electron beam via RF induced transverse deflection based on the newly developed 200 keV frequency-tunable strip-line pulser.
View Article and Find Full Text PDFIntegrating femtosecond lasers with electron microscopies has enabled direct imaging of transient structures and morphologies of materials in real time and space. Here, we report the development of a laser-free ultrafast electron microscopy (UEM) offering the same capability but without requiring femtosecond lasers and intricate instrumental modifications. We create picosecond electron pulses for probing dynamic events by chopping a continuous beam with a radio frequency (RF)-driven pulser with the pulse repetition rate tunable from 100 MHz to 12 GHz.
View Article and Find Full Text PDFA 300 keV transmission electron microscope was modified to produce broadband pulsed beams that can be, in principle, between 40 MHz and 12 GHz, corresponding to temporal resolution in the nanosecond to picosecond range without an excitation laser. The key enabling technology is a pair of phase-matched modulating and de-modulating traveling wave metallic comb striplines (pulsers). An initial temporal resolution of 30 ps was achieved with a strobe frequency of 6.
View Article and Find Full Text PDFWe propose and demonstrate a method to reduce the pulse width and timing jitter of a relativistic electron beam through THz driven beam compression. In this method the longitudinal phase space of a relativistic electron beam is manipulated by a linearly polarized THz pulse copropagating in a dielectric tube such that the bunch tail has a higher velocity than the bunch head, which allows simultaneous reduction of both pulse width and timing jitter after passing through a drift. In this experiment, the beam is compressed by more than a factor of 4 from 130 fs to 28 fs with the arrival time jitter also reduced from 97 fs to 36 fs, opening up new opportunities in using pulsed electron beams for studies of ultrafast dynamics.
View Article and Find Full Text PDFWe demonstrate, theoretically and experimentally, that a traveling electric charge passing from one photonic crystal into another generates edge waves-electromagnetic modes with frequencies inside the common photonic band gap localized at the interface-via a process of transition edge-wave radiation (TER). A simple and intuitive expression for the TER spectral density is derived and then applied to a specific structure: two interfacing photonic topological insulators with opposite spin-Chern indices. We show that TER breaks the time-reversal symmetry and enables valley- and spin-polarized generation of topologically protected edge waves propagating in one or both directions along the interface.
View Article and Find Full Text PDFFor two decades, time-resolved transmission electron microscopes (TEM) have relied on pulsed-laser photoemission to generate electron bunches to explore sub-microsecond to sub-picosecond dynamics. Despite the vast successes of photoemission time-resolved TEMs, laser-based systems are inherently complex, thus tend not to be turn-key. In this paper, we report on the successful retrofit of a commercial 200 keV TEM, without an external laser, capable of producing continuously tunable pulsed electron beams with repetition rates from 0.
View Article and Find Full Text PDFWe propose and demonstrate a terahertz (THz) oscilloscope for recording time information of an ultrashort electron beam. By injecting a laser-driven THz pulse with circular polarization into a dielectric tube, the electron beam is swept helically such that the time information is uniformly encoded into the angular distribution that allows one to characterize both the temporal profile and timing jitter of an electron beam. The dynamic range of the measurement in such a configuration is significantly increased compared to deflection with a linearly polarized THz pulse.
View Article and Find Full Text PDFWe present the first demonstration of high-power, reversed-Cherenkov wakefield radiation by electron bunches passing through a metamaterial structure. The structure supports a fundamental transverse magnetic mode with a negative group velocity leading to reversed-Cherenkov radiation, which was clearly verified in the experiments. Single 45 nC electron bunches of 65 MeV traversing the structure generated up to 25 MW in 2 ns pulses at 11.
View Article and Find Full Text PDFUndesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (∼100 μm) dark current imaging experiment has been performed in an L-band photocathode gun operating at ∼100 MV/m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode.
View Article and Find Full Text PDFWe report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic-band-gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have the potential for reducing long-range wakefields in accelerators.
View Article and Find Full Text PDFField emission from a solid metal surface has been continuously studied for a century over macroscopic to atomic scales. It is general knowledge that, other than the surface properties, the emitted current is governed solely by the applied electric field. A pin cathode has been used to study the dependence of field emission on stored energy in an L-band rf gun.
View Article and Find Full Text PDFA device and a method for producing ultrashort electron pulses with GHz repetition rates via pulsing an input direct current (dc) electron beam are provided. The device and the method are based on an electromagnetic-mechanical pulser (EMMP) that consists of a series of transverse deflecting cavities and magnetic quadrupoles. The EMMP modulates and chops the incoming dc electron beam and converts it into pico- and sub-pico-second electron pulse sequences (pulse trains) at >1GHz repetition rates, as well as controllably manipulates the resulting pulses.
View Article and Find Full Text PDFA table top device for producing high peak power (tens of megawatts to a gigawatt) T-ray beams is described. An electron beam with a rectangular longitudinal profile is produced out of a photoinjector via stacking of the laser pulses. The beam is also run off-crest of the photoinjector rf to develop an energy chirp.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2003
By applying different symmetric boundary conditions, we found that the transverse wakefields generated by an electron bunch traveling through a partially loaded rectangular dielectric structure at an off center position can be decomposed into corresponding orthogonal longitudinal section electric (LSE) and longitudinal section magnetic (LSM) modes for guided waves as in the case of longitudinal wakefields treated previously. The wakefields are characterized using the normalized shunt impedance R/Q, a function of the geometry of the accelerating structure, for both LSE and LSM modes. A numerical example is given for an X-band waveguide structure and detailed results are given for the several leading transverse wakefield terms.
View Article and Find Full Text PDF