The lack of standardized objective approaches hinders the accurate diagnosis and treatment of depression. Herein, a novel electrochemical platform was created utilizing cost-effective and rapid 3D printing technology to overcome the constraints of conventional diagnostic methods. This method allows for highly sensitive detection of Apolipoprotein A4 (Apo-A4), an important biomarker for depression, using dual-signal outputs.
View Article and Find Full Text PDFA sandwich-type electrochemical immunosensor was proposed for the ultra-sensitive detection of CD44, a potential biomarker for breast cancer. In this design, a customized template-based ionic liquid (1-butyl-2,3-dimethylimidazolium tetrafluoroborate) carbon paste electrode (CILE) served as the sensing platform, and thionine/Au nanoparticles/covalent-organic frameworks (THI/Au/COF) were used as the signal label. Moreover, an enzyme-free signal amplification strategy was introduced by involving HO and phosphotungstate (PW) with peroxidase-like activity.
View Article and Find Full Text PDFFurosemide (FUR), banned in sports events by the World Anti-Doping Agency, is a key target in drug tests, necessitating a pretreatment material capable of selectively, rapidly, and sufficiently separating/enriching analytes from complex matrices. Herein, a metal-mediated magnetic molecularly imprinted polymer (mMIP) was rationally designed and synthesized for the specific capture of FUR. The preparations involved the utilization of chromium (III) as the binding pivot, (3-aminopropyl)triethoxysilane as functional monomer, and FeO as core, all assembled via free radical polymerization.
View Article and Find Full Text PDFRapid separation and enrichment of targets in biological matrixes are of significant interest in multiple life sciences disciplines. Molecularly imprinted polymers (MIPs) have vital applications in extraction and sample cleanup owing to their excellent specificity and selectivity. However, the low mass transfer rate, caused by the heterogeneity of imprinted cavities in polymer networks and strong driving forces, significantly limits its application in high-throughput analysis.
View Article and Find Full Text PDFThe overuse of fipronil (FPN, a broad-spectrum insecticide) in agriculture has brought great concerns for environmental pollution and food safety. The development of a rapid, reliable, and portable analytical method for the on-site monitoring of FPN is therefore of great significance but is full of challenge. Herein, a novel supramolecular probe using human serum albumin (HSA) as the host and an aggregation-induced emission-active fluorescence probe LIQ-TPA-TZ as the guest was developed for the colorimetric and ratiometric detection of FPN, displaying fast response (30 s), high sensitivity (LOD ∼ 0.
View Article and Find Full Text PDFScreening bioactive compounds from natural products is one of the most effective ways for new drug research and development. However, obtaining a single extract component on a large scale and with high purity from a complex matrix is still an arduous and challenging task. Herein, one metal mediated magnetic molecularly imprinted polymer (mMIP) was rationally designed and prepared for specifically capturing Aristolochic acid I (AAI).
View Article and Find Full Text PDFAnthocyanins have been reported to have potential as dietary or pharmaceutical supplements in the application of cancer prevention and adjunctive treatment. However, there are few studies on the effect of anthocyanins on melanoma, which have only been performed in cell lines. The objective of this work was to investigate the anticancer effects and mechanisms of bilberry anthocyanin extract (BAE) on melanoma In Vitro and In Vivo.
View Article and Find Full Text PDFDue to the polygenic and heterogeneous nature of the tumorigenesis process, traditional chemotherapy is far from desirable. Fabricating multifunctional nanoplatforms integrating photodynamic effect can synergistically enhance chemotherapy because they can make the cancer cells much sensitive to chemotherapeutics. However, how to assemble different units in nanoplatforms and minimize side effects caused by chemodrugs and photosensitizers (PSs) still needs to be explored.
View Article and Find Full Text PDFRecently, metal mediated molecularly imprinted polymers (MMIPs) raise extensive attention due to their special adsorption/desorption mechanism. And the metal ion plays a key role both for MMIPs preparation and molecular recognition. But it is still a big question to select one suitable metal ion.
View Article and Find Full Text PDFJ Pharm Biomed Anal
May 2022
As one kind of artificial antibody, molecularly imprinted polymers (MIPs) has been widely used to separate/enrich target molecules from samples with the complex matrix prior to instrumental analysis. In this work, one novel copper mediated magnetic MIPs was developed towards anti-bacteria macrolide antibiotic tylosin (TYL). The obtained microspheres had a lot of convexities distributed evenly on the surface.
View Article and Find Full Text PDFNorfloxacin (NFX) is an antibiotic that is widely used in animal husbandry. However, the presence of NFX even in trace amounts in animal-derived food may harm human health. Therefore, it is of practical significance to establish a method for monitoring NFX residues in food.
View Article and Find Full Text PDFThree new aconitine-type C-diterpenoid alkaloid namely novolunines A (1), B (2), and C (3), along with fifteen known diterpenoid alkaloids were isolated from the roots of Aconitum novoluridum, whose phytochemical investigations have never been reported before. The structures of three new alkaloids were established on the basis of spectra data (high-resolution electrospray ionization (HR-ESI)-MS, IR, one dimensional (1D)- and 2D-NMR). Noteworthily, novolunines A (1) and B (2) are two diterpenoid alkaloids bearing conformational isomerism.
View Article and Find Full Text PDFMolecularly imprinted polymers (MIPs) are a kind of synthetic receptor-like materials. They have drawn more and more attention in the past decades. In this work, a facile method was developed to prepare porous magnetic MIPs utilizing metal coordination.
View Article and Find Full Text PDFHere, magnetic molecularly imprinted polymers were designed for norfloxacin via oil-in-water emulsifier-free emulsion method. It was prepared by simply mixing norfloxacin, methacrylic acid-co-ethylene glycol dimethacrylate copolymer, and Fe O together at room temperature. Characterized by multiple analytical tools, the particle size, pore size, pore volume, specific surface area, and saturation magnetization of the product were about 30 µm, 10-500 nm, 2.
View Article and Find Full Text PDF