Publications by authors named "Chunggab Choi"

The most common type of spinal cord injury is the contusion of the spinal cord, which causes progressive secondary tissue degeneration. In this study, we applied genetically modified human neural stem cells overexpressing BDNF (brain-derived neurotrophic factor) (F3.BDNF) to determine whether they can promote functional recovery in the spinal cord injury (SCI) model in rats.

View Article and Find Full Text PDF

Background: The blood-brain barrier (BBB) presents a significant challenge to the therapeutic efficacy of stem cells in chronic stroke. Various methods have been developed to increase BBB permeability, but these are associated with adverse effects and are, therefore, not clinically applicable. We recently identified that combination drug treatment of mannitol and temozolomide improved BBB permeability in vitro.

View Article and Find Full Text PDF

The human umbilical cord is a promising source of mesenchymal stromal cells (MSCs). Intravenous administration of human umbilical cord-derived MSCs (IV-hUMSCs) showed a favorable effect in a rodent stroke model by a paracrine mechanism. However, its underlying therapeutic mechanisms must be determined for clinical application.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is major obstacle in drug or stem cell treatment in chronic stroke. We hypothesized that adding mannitol to temozolomide (TMZ) is a practically applicable method for resolving the low efficacy of intravenous mannitol therapy. In this study, we investigated whether BBB permeability could be increased by this combined treatment.

View Article and Find Full Text PDF

Intravenous administration of mesenchymal stem cells (IV-MSC) protects the ischemic rat brain in a stroke model, but the molecular mechanism underlying its therapeutic effect is unclear. We compared genomic profiles using the mRNA microarray technique in a rodent stroke model. Rats were treated with 1 × 10(6) IV-MSC or saline (sham group) 2 h after transient middle cerebral artery occlusion (MCAo).

View Article and Find Full Text PDF

Background Aims: Adipose-derived mesenchymal stromal cells (AD-MSCs) have high proliferative capacity and ability to secrete trophic factors. Although intra-arterial (IA) transplantation of stem cells induces efficient engraftment to the host brain, it is unclear whether engrafted cells exert their long-term therapeutic effects through a bystander mechanism or a cell replacement mechanism.

Methods: After induction of ischemia in rats by middle cerebral artery occlusion, we transplanted human AD-MSCs into their carotid arteries with the use of a micro-needle, and we then investigated the therapeutic effects during the early and late phases of ischemia by means of in vivo magnetic resonance imaging, functional and histological analyses.

View Article and Find Full Text PDF

Induced pluripotent stem cells (iPSCs) generated from somatic cells of patients can provide immense opportunities to model human diseases, which may lead to develop novel therapeutics. Huntington's disease (HD) is a devastating neurodegenerative genetic disease, with no available therapeutic options at the moment. We recently reported the characteristics of a HD patient-derived iPSC carrying 72 CAG repeats (HD72-iPSC).

View Article and Find Full Text PDF

The transplantation of neural precursor cells (NPCs) is known to be a promising approach to ameliorating behavioral deficits after stroke in a rodent model of middle cerebral artery occlusion (MCAo). Previous studies have shown that transplanted NPCs migrate toward the infarct region, survive and differentiate into mature neurons to some extent. However, the spatiotemporal dynamics of NPC migration following transplantation into stroke animals have yet to be elucidated.

View Article and Find Full Text PDF

Ischemic stroke mainly caused by middle cerebral artery occlusion (MCAo) represents the major type of stroke; however, there are still very limited therapeutic options for the stroke-damaged patients. In this study, we evaluated the neurogenic and therapeutic potentials of human neural stem cells (NSCs) overexpressing brain-derived neurotrophic factor (HB1.F3.

View Article and Find Full Text PDF

Ischemic stroke mainly caused by middle cerebral artery occlusion (MCAo) is a major type of stroke, but there are currently very limited therapeutic options for its cure. Neural stem cells (NSCs) or neural precursor cells (NPCs) derived from various sources are known to survive and improve neurological functions when they are engrafted in animal models of stroke. Induced pluripotent stem cells (iPSCs) generated from somatic cells of patients are novel cells that promise the autologous cell therapy for stroke.

View Article and Find Full Text PDF

Induced pluripotent stem cells (iPSCs) generated from somatic cells of patients can be used to model different human diseases. They may also serve as sources of transplantable cells that can be used in novel cell therapies. Here, we analyzed neuronal properties of an iPSC line derived from a patient with a juvenile form of Huntington's disease (HD) carrying 72 CAG repeats (HD-iPSC).

View Article and Find Full Text PDF

Fibroblast growth factor (FGF) signaling is implicated in the control of pluripotency and lineage differentiation of both human and mouse embryonic stem cells (mESCs). FGF4 dependent stimulation of ERK1/2 signaling triggers transition of pluripotent ESCs from self-renewal and lineage commitment. In this study, Sprouty 1 (Spry1) expression was observed in undifferentiated mESCs, where it modulated ERK1/2 activity.

View Article and Find Full Text PDF