Immune rejection is a major barrier to the successful human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) transplantation for age-related macular degeneration (AMD). Traditional strategies to mitigate immune rejection involve ablating major histocompatibility complex (MHC) molecules on hESC-RPE. An alternative approach is immune checkpoint overexpression, avoiding natural killer (NK) cell-mediated destruction due to MHC-I deficiency.
View Article and Find Full Text PDFOur previous study demonstrated that combined transplantation of bone marrow-derived mesenchymal stem cells and retinal progenitor cells in rats has therapeutic effects on retinal degeneration that are superior to transplantation of retinal progenitor cells alone. Bone marrow- derived mesenchymal stem cells regulate and interact with various cells in the retinal microenvironment by secreting neurotrophic factors and extracellular vesicles. Small extracellular vesicles derived from bone marrow-derived mesenchymal stem cells, which offer low immunogenicity, minimal tumorigenic risk, and ease of transportation, have been utilized in the treatment of various neurological diseases.
View Article and Find Full Text PDFCorneal alkali burn remains a clinical challenge in ocular emergency, necessitating the development of effective therapeutic drugs. Here, we observed the arachidonic acid metabolic disorders of corneas induced by alkali burns and aimed to explore the role of Prostaglandin E2 (PGE2), a critical metabolite of arachidonic acid, in the repair of alkali-burned corneas. We found a moderate dosage of PGE2 promoted the alkali-burned corneal epithelial repair, whereas a high dosage of PGE2 exhibited a contrary effect.
View Article and Find Full Text PDFRetinal degeneration is a leading cause of irreversible vision impairment and blindness worldwide. Previous studies indicate that subretinal injection of human retinal progenitor cells (hRPCs) can delay the progression of retinal degeneration, preserve retinal function, and protect photoreceptor cells from death, albeit the mechanism is not well understood. In this study, small extracellular vesicles derived from hRPCs (hRPC-sEVs) were injected into the subretinal space of retinal dystrophic RCS rats.
View Article and Find Full Text PDFBackground: Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cell transplants have served as a cell therapy for treating retinal degenerative diseases. However, how to optimize the survival and engraftment of hESC-RPE cells is a great challenge.
Methods: Here, we report hESC-RPE cells that are embedded with polyelectrolytes gelatin and alginate by layer-by-layer (LbL) self-assembly technique, based on the opposite charge of alternate layers.