Publications by authors named "Chungang Feng"

Dermal hyperpigmentation stands out among the various skin pigmentation phenotypes in chickens, where most other pigmentation variants affect feather color and patterning predominantly. Despite numerous black chicken breeds worldwide, only a select few exhibit comprehensive black pigmentation, which encompasses the skin, meat, flesh, and bones. The process of skin melanin pigmentation is intricate and develops successively.

View Article and Find Full Text PDF

Egg-laying is an important trait in chickens, and it is affected by many factors, such as hormones regulated by the hypothalamic-pituitary axis and precursors synthesized by the liver. Recent studies showed that gut microbiota was associated with egg-laying, however, its underlying mechanism remains unclear. We comprehensively analyzed the host transcriptome, gut microbiota, and metabolome in broiler breeder hens during the pre-laying, peak-laying, and late-laying periods.

View Article and Find Full Text PDF

Tibial dyschondroplasia (TD) is a severe bone disease that affects fast-growing broiler chickens and causes economic loss. Despite previous studies, the regulatory mechanism of TD remains unclear and is thought to be primarily based on thiram induction, which may differ from that of naturally occurring diseases. To better understand TD, a digital X-ray machine was used in the present study to determine its incidence in four hundred yellow-feathered broiler chickens.

View Article and Find Full Text PDF

Climate change poses a significant threat to the poultry industry, especially in hot climates that adversely affect chicken growth, development, and productivity through heat stress. This literature review evaluates the evolutionary background of chickens with the specific genetic characteristics that can help chickens to cope with hot conditions. Both natural selection and human interventions have influenced the genetic characteristics of the breeds used in the current poultry production system.

View Article and Find Full Text PDF
Article Synopsis
  • * The study explores the gut microbiota changes during different egg-laying periods and its impact on gene expression, revealing significant microbial shifts in the intestinal tract of hens.
  • * Findings indicate that while certain genes related to transport and stress responses are upregulated during egg-laying, the levels of specific hormones and the abundance of beneficial bacteria like Lactobacillus also correlate with egg production performance.
View Article and Find Full Text PDF

Follicular fluid meiosis-activating sterol (FF-MAS) is a small molecule compound found in FF, named for its ability to induce oocyte resumption of meiosis. Granulosa cells (GCs) within the follicle are typically located in a hypoxic environment under physiologic conditions due to limited vascular distribution. Previous research suggests that hypoxia-induced cell cycle arrest and apoptosis in GCs may be crucial triggering factors in porcine follicular atresia.

View Article and Find Full Text PDF

The photoperiod is an important factor during rearing and laying period that affects age and body weight at sexual maturation and reproductive performance in poultry; however relevant research on this factor in pigeons is still lacking. Thus, this study investigated the effects of different photoperiodic programs on the reproductive performance and hormonal profile in White King pigeons. From 101 d of age, the pigeons in the control group were exposed to a natural photoperiod until 160 d, and then to a photoperiod of 16 h (16 light [L]: 8 dark [D]) and lasted for 200 d.

View Article and Find Full Text PDF

The objective of this study was to investigate the effects of sex on meat quality and the composition of amino and fatty acids in the breast muscles of White King pigeon squabs. Untargeted metabolomics was also conducted to distinguish the metabolic composition of plasma in different sexes. Compared with male squabs, female squabs had greater intramuscular fat (IMF) deposition and lower myofiber diameter and hydroxyproline content, leading to a lower shear force.

View Article and Find Full Text PDF

Gastric cancer (GACA) is a complex and multifaceted disease influenced by a variety of environmental and genetic factors. Somatic mutations play a major role in its development, and their characteristics, including the asymmetry between two DNA strands, are of great interest and appear as a signal of information and guidance, revealing mechanisms of DNA damage and repair. Here, we analyzed the impact of High-frequency mutated genes on patient prognosis and found that the effect of expression levels of tumor protein p53 (TP53) and lysine methyltransferase 2C (KMT2C) genes remained high throughout the development of GACA, with similar expression patterns.

View Article and Find Full Text PDF

Severe hypoxia induced by vascular compromise (ovarian torsion, surgery), obliteration of vessels (aging, chemotherapy, particularly platinum drugs) can cause massive follicle atresia. On the other hand, hypoxia increases the occurrence of DNA double-strand breaks (DSBs) and triggers cellular damage repair mechanisms; however, if the damage is not promptly repaired, it can also induce the apoptosis program. Insulin-like growth factor-I (IGF-I) is a polypeptide hormone that plays essential roles in stimulating mammalian follicular development.

View Article and Find Full Text PDF

The objective of this study was to investigate the effects of rearing systems on the bone quality parameters in chickens using a metabolomics strategy. A total of 419 male one-day-old chicks were randomly allocated to two groups, a floor rearing group (FRG, = 173) and a cage rearing group (CRG, = 246). At 6, 8, 10, and 12 weeks of age, all chickens were radiographed by a digital X-ray machine, and body weight was recorded.

View Article and Find Full Text PDF

The influence of monochromatic green light stimulation on hatching performance and embryo development has been studied in chickens, but not geese. The liver has crucial functions in the regulation of energy metabolism during embryogenesis, but its involvement in green light transduction is still unidentified. We aimed to determine the influence of monochromatic green light on Yangzhou goose hatching performance and embryo development.

View Article and Find Full Text PDF

The rapid development of medical technology and widespread application of immunosuppressive drugs have improved the success rate of organ transplantation significantly. However, the use of immunosuppressive agents increases the frequency of malignancy greatly. With the prospect of "precision medicine" for tumors and development of next-generation sequencing technology, more attention has been paid to the application of high-throughput sequencing technology in clinical oncology research, which is mainly applied to the early diagnosis of tumors and analysis of tumor-related genes.

View Article and Find Full Text PDF

The selection for improved body weight is an effective approach in animal breeding. Guangxi Partridge chickens have differentiated into two lines under selective breeding, which include line S and line D that have shown statistically significant differences in body weight. However, the meat quality analysis in our study indicated that the quality of breast and thigh muscles in line S chickens changed, which included increased values of L*, b*, and drip loss and decreased a* value, pH, and shear force in skeletal muscles.

View Article and Find Full Text PDF

The Guangxi Partridge chicken is a well-known chicken breed in southern China with good meat quality, which has been bred as a meat breed to satisfy the increased demand of consumers. Compared with line D whose body weight is maintained at the average of the unselected group, the growth rate and weight of the selected chicken group (line S) increased significantly after breeding for four generations. Herein, transcriptome analysis was performed to identify pivotal genes and signal pathways of selective breeding that contributed to potential mechanisms of growth and development under artificial selection pressure.

View Article and Find Full Text PDF

The mechanisms underlying sex determination are astonishingly plastic. Particularly the triggers for the molecular machinery, which recalls either the male or female developmental program, are highly variable and have evolved independently and repeatedly. Fish show a huge variety of sex determination systems, including both genetic and environmental triggers.

View Article and Find Full Text PDF

In depth studies of quantitative trait loci (QTL) can provide insights to the genetic architectures of complex traits. A major effect QTL at the distal end of chicken chromosome 1 has been associated with growth traits in multiple populations. This locus was fine-mapped in a fifteen-generation chicken advanced intercross population including 1119 birds and explored in further detail using 222 sequenced genomes from 10 high/low body weight chicken stocks.

View Article and Find Full Text PDF

Domestication has resulted in immense phenotypic changes in animals despite their relatively short evolutionary history. The European rabbit is one of the most recently domesticated animals, but exhibits distinct morphological, physiological, and behavioral differences from their wild conspecifics. A previous study revealed that sequence variants with striking allele frequency differences between wild and domestic rabbits were enriched in conserved noncoding regions, in the vicinity of genes involved in nervous system development.

View Article and Find Full Text PDF

Chickens are bred all over the world and have significant economic value as one of the major agricultural animals. The growth rate of commercial broiler chickens is several times higher than its Red Jungle fowl (RJF) ancestor. To further improve the meat production of commercial chickens, it is quite important to decipher the genetic mechanism of chicken growth traits.

View Article and Find Full Text PDF

Speciation is a process proceeding from weak to complete reproductive isolation. In this continuum, naturally hybridizing taxa provide a promising avenue for revealing the genetic changes associated with the incipient stages of speciation. To identify such changes between two subspecies of rabbits that display partial reproductive isolation, we studied patterns of allele frequency change across their hybrid zone using whole-genome sequencing.

View Article and Find Full Text PDF

The Atlantic herring is one of the most abundant vertebrates on earth but its nucleotide diversity is moderate (π = 0.3%), only three-fold higher than in human. Here, we present a pedigree-based estimation of the mutation rate in this species.

View Article and Find Full Text PDF

The dwarf phenotype characterizes the smallest of rabbit breeds and is governed largely by the effects of a single dwarfing allele with an incompletely dominant effect on growth. Dwarf rabbits typically weigh under 1 kg and have altered craniofacial morphology. The dwarf allele is recessive lethal and dwarf homozygotes die within a few days of birth.

View Article and Find Full Text PDF

Skeletal atavism in Shetland ponies is a heritable disorder characterized by abnormal growth of the ulna and fibula that extend the carpal and tarsal joints, respectively. This causes abnormal skeletal structure and impaired movements, and affected foals are usually killed. In order to identify the causal mutation we subjected six confirmed Swedish cases and a DNA pool consisting of 21 control individuals to whole genome resequencing.

View Article and Find Full Text PDF

Ecological adaptation is of major relevance to speciation and sustainable population management, but the underlying genetic factors are typically hard to study in natural populations due to genetic differentiation caused by natural selection being confounded with genetic drift in subdivided populations. Here, we use whole genome population sequencing of Atlantic and Baltic herring to reveal the underlying genetic architecture at an unprecedented detailed resolution for both adaptation to a new niche environment and timing of reproduction. We identify almost 500 independent loci associated with a recent niche expansion from marine (Atlantic Ocean) to brackish waters (Baltic Sea), and more than 100 independent loci showing genetic differentiation between spring- and autumn-spawning populations irrespective of geographic origin.

View Article and Find Full Text PDF

Background: DNA cytosine methylation is an important epigenetic modification that has significant effects on a variety of biological processes in animals. Avian species hold a crucial position in evolutionary history. In this study, we used whole-genome bisulfite sequencing (MethylC-seq) to generate single base methylation profiles of lungs in two genetically distinct and highly inbred chicken lines (Fayoumi and Leghorn) that differ in genetic resistance to multiple pathogens, and we explored the potential regulatory role of DNA methylation associated with immune response differences between the two chicken lines.

View Article and Find Full Text PDF