Publications by authors named "Chung-Tse Chen"

Background: Rice is a key global food crop. Rice lodging causes a reduction in plant height and crop yield, and rice is prone to lodging in the late growth stage because of panicle initiation. We used two water irrigation modes and four fertilizer application intervals to investigate the relationship between lodging and various cultivation conditions over 2 years.

View Article and Find Full Text PDF

Tea is a widely consumed beverage prepared using the fresh leaves of Camellia sinensis L. Tea plants are classified into small- and large-leaf varieties. Polyphenol oxidase (PPO), a crucial enzyme in tea manufacturing, catalyzes essential phenolic metabolites into different derivatives.

View Article and Find Full Text PDF

Background: Tea is one of the most popular beverages in the world. There are many secondary metabolites can be found in tea such as anthocyanins, proanthocyanidins, flavonols and catechins. These secondary metabolites in plants are proved to act protective components for human health effect.

View Article and Find Full Text PDF

Background: Understanding the responses of rice to environmental stresses such as unscheduled submergence is of pressing important owing to increasing severity of weather thought to arise from global climate change. When rice is completely submerged, different types adopt either a quiescence survival strategy (i.e.

View Article and Find Full Text PDF

Via the integration of nanocomposites comprising I-III-VI semiconductor quantum dots (QDs) decorated onto a single SnO2 nanowire (NW), we successfully fabricate an ultrahigh-sensitivity and wide spectral-response photodetector. Under the illumination of He-Cd laser (325 nm) with the photon energy larger than the band gap of SnO2 nanowire, remarkably, an ultrahigh photocurrent gain up to 2.5 × 10(5) has been achieved, and an enhancement factor can reach up to 700% (cf.

View Article and Find Full Text PDF