Publications by authors named "Chung-Shou Liao"

Network alignment provides a comprehensive way to discover the similar parts between molecular systems of different species based on topological and biological similarity. With such a strong basis, one can do comparative studies at a systems level in the field of computational biology. In this survey paper, we focus on protein-protein interaction networks and review some representative algorithms for network alignment in the past two decades as well as the state-of-the-art aligners.

View Article and Find Full Text PDF

Motivation: Protein complexes are one of the keys to studying the behavior of a cell system. Many biological functions are carried out by protein complexes. During the past decade, the main strategy used to identify protein complexes from high-throughput network data has been to extract near-cliques or highly dense subgraphs from a single protein-protein interaction (PPI) network.

View Article and Find Full Text PDF

Next-generation sequencing (NGS) technologies have revolutionized the field of genetics and are trending toward clinical diagnostics. Exome and targeted sequencing in a disease context represent a major NGS clinical application, considering its utility and cost-effectiveness. With the ongoing discovery of disease-associated genes, various gene panels have been launched for both basic research and diagnostic tests.

View Article and Find Full Text PDF

Motivation: The global alignment of protein interaction networks is a widely studied problem. It is an important first step in understanding the relationship between the proteins in different species and identifying functional orthologs. Furthermore, it can provide useful insights into the species' evolution.

View Article and Find Full Text PDF

Background: In the last decade, a considerable amount of research has been devoted to investigating the phylogenetic properties of organisms from a systems-level perspective. Most studies have focused on the classification of organisms based on structural comparison and local alignment of metabolic pathways. In contrast, global alignment of multiple metabolic networks complements sequence-based phylogenetic analyses and provides more comprehensive information.

View Article and Find Full Text PDF

We describe IsoBase, a database identifying functionally related proteins, across five major eukaryotic model organisms: Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, Mus musculus and Homo Sapiens. Nearly all existing algorithms for orthology detection are based on sequence comparison. Although these have been successful in orthology prediction to some extent, we seek to go beyond these methods by the integration of sequence data and protein-protein interaction (PPI) networks to help in identifying true functionally related proteins.

View Article and Find Full Text PDF

We propose a novel algorithm, PISwap, for computing global pairwise alignments of protein interaction networks, based on a local optimization heuristic that has previously demonstrated its effectiveness for a variety of other NP-hard problems, such as the Traveling Salesman Problem. Our algorithm begins with a sequence-based network alignment and then iteratively adjusts the alignment by incorporating network structure information. It has a worst-case pseudo-polynomial running-time bound and is very efficient in practice.

View Article and Find Full Text PDF

Motivation: With the increasing availability of large protein-protein interaction networks, the question of protein network alignment is becoming central to systems biology. Network alignment is further delineated into two sub-problems: local alignment, to find small conserved motifs across networks, and global alignment, which attempts to find a best mapping between all nodes of the two networks. In this article, our aim is to improve upon existing global alignment results.

View Article and Find Full Text PDF