The structure of a protein determines its biological function(s) and its interactions with other factors; the binding regions tend to be conserved in sequence and structure, and the interacting residues involved are usually in close 3D space. The Protein Data Bank currently contains more than 110 000 protein structures, approximately one-third of which contain metal ions. Identifying and characterizing metal ion-binding sites is thus essential for investigating a protein's function(s) and interactions.
View Article and Find Full Text PDFThe conservation level of a residue is a useful measure about the importance of that residue in protein structure and function. Much information about sequence conservation comes from aligning homologous sequences. Profiles showing the variation of the conservation level along the sequence are usually interpreted in evolutionary terms and dictated by site similarities of a proper set of homologous sequences.
View Article and Find Full Text PDFIn silico prediction of the new drug-target interactions from existing databases is of important value for the drug discovery process. Currently, the amount of protein targets that have been identified experimentally is still very small compared with the entire human proteins. In order to predict protein-ligand interactions in an accurate manner, we have developed a support vector machine (SVM) model based on the chemical-protein interactions from STITCH.
View Article and Find Full Text PDFThe schizophrenia-related protein G72 plays a unique role in the regulation of D-amino acid oxidase (DAO) in great apes. Several psychiatric diseases, including schizophrenia and bipolar disorder, are linked to overexpression of DAO and G72. Whether G72 plays a positive or negative regulatory role in DAO activity, however, has been controversial.
View Article and Find Full Text PDF