Publications by authors named "Chung-Ru Ho"

Total suspended solid (TSS) is an important water quality parameter. This study was conducted to test the feasibility of the band combination of hyperspectral sensing for inland turbid water monitoring in Taiwan. The field spectral reflectance in the Wu river basin of Taiwan was measured with a spectroradiometer; the water samples were collected from the different sites of the Wu river basin and some water quality parameters were analyzed on the sites (in situ) as well as brought to the laboratory for further analysis.

View Article and Find Full Text PDF

An neural network model of data mining is used to identify error sources in satellite-derived tropical sea surface temperature (SST) estimates from thermal infrared sensors onboard the Geostationary Operational Environmental Satellite (GOES). By using the Back Propagation Network (BPN) algorithm, it is found that air temperature, relative humidity, and wind speed variation are the major factors causing the errors of GOES SST products in the tropical Pacific. The accuracy of SST estimates is also improved by the model.

View Article and Find Full Text PDF

Multi-sensor data from different satellites are used to identify an upwelling area in the sea off northeast Taiwan. Sea surface temperature (SST) data derived from infrared and microwave, as well as sea surface height anomaly (SSHA) data derived from satellite altimeters are used for this study. An integration filtering algorithm based on SST data is developed for detecting the cold patch induced by the upwelling.

View Article and Find Full Text PDF

Satellite altimeter data from 1993 to 2005 has been used to analyze the seasonal variation and the interannual variability of upper layer thickness (ULT) in the South China Sea (SCS). Base on in-situ measurements, the ULT is defined as the thickness from the sea surface to the depth of 16°C isotherm which is used to validate the result derived from satellite altimeter data. In comparison with altimeter and in-situ derived ULTs yields a correlation coefficient of 0.

View Article and Find Full Text PDF