While luminescent stimuli-responsive materials (LSRMs) have become one of the most sought-after materials owing to their potential in optoelectronic applications, the use of earth-scarce lanthanides remains a crucial problem to be solved for further development. In this work, two manganese-based LSRMs, ()-(+)-1-phenylethylammonium manganese bromide, (R-PEA)MnBr, and ()-(-)-1-phenylethylammonium manganese bromide, (S-PEA)MnBr, are successfully demonstrated. Both (R-PEA)MnBr and (S-PEA)MnBr show a kinetically stable red-emissive amorphous state and a thermodynamically stable green-emissive crystalline state at room temperature, where the fully reversible transition can be done through melt-quenching and annealing processes.
View Article and Find Full Text PDFWe demonstrate semipolar (20-21) micro-LED-based high-bandwidth WLEDs utilizing perovskite QDs and organic emitters in color-conversion films. The WLEDs exhibit a bandwidth in excess of 1 GHz and a CCT of 6141 K, making these devices suitable for visible light communication and lighting applications.
View Article and Find Full Text PDFAlthough vacuum-deposited metal halide perovskite light-emitting diodes (PeLEDs) have great promise for use in large-area high-color-gamut displays, the efficiency of vacuum-sublimed PeLEDs currently lags that of solution-processed counterparts. In this study, highly efficient vacuum-deposited PeLEDs are prepared through a process of optimizing the stoichiometric ratio of the sublimed precursors under high vacuum and incorporating ultrathin under- and upper-layers for the perovskite emission layer (EML). In contrast to the situation in most vacuum-deposited organic light-emitting devices, the properties of these perovskite EMLs are highly influenced by the presence and nature of the upper- and presublimed materials, thereby allowing us to enhance the performance of the resulting devices.
View Article and Find Full Text PDFThe phosphor-converted light-emitting diode (PC-LED) has become an indispensable solid-state lighting and display technologies in the modern society. Nevertheless, the use of scarce rare-earth elements and the thermal quenching (TQ) behavior are still two most crucial issues yet to be solved. Here, this work successfully demonstrates a highly efficient and thermally stable green emissive MnI (XanPO) crystals showing a notable photoluminescence quantum yield (PLQY) of 94% and a super TQ resistance from 4 to 623 K.
View Article and Find Full Text PDF