We present the strategic design of donor-acceptor cyanoarene-based photocatalysts (PCs) aiming to augment beneficial PC degradation for halogen atom transfer (XAT)-induced dehalogenation reactions. Our investigation reveals a competitive nature between the catalytic cycle and the degradation pathway, with the degradation becoming dominant, particularly for less activated alkyl halides. The degradation behavior of PCs significantly impacts the efficiency of the XAT process, leading to exploration into manipulating the degradation behavior in a desirable direction.
View Article and Find Full Text PDFSpatial transcriptomics is a newly emerging field that enables high-throughput investigation of the spatial localization of transcripts and related analyses in various applications for biological systems. By transitioning from conventional biological studies to "in situ" biology, spatial transcriptomics can provide transcriptome-scale spatial information. Currently, the ability to simultaneously characterize gene expression profiles of cells and relevant cellular environment is a paradigm shift for biological studies.
View Article and Find Full Text PDFWe report our iterative efforts toward the divergent total syntheses of curcusones A-D via Suzuki coupling, intramolecular cyclopropanation, and a key divinylcyclopropane rearrangement. Progress of our synthesis was repeatedly challenged by the highly substrate-dependent cyclopropanation step, which we could ultimately overcome by judicious choice of substituents on the six-membered ring fragment.
View Article and Find Full Text PDFIn the course of a total synthesis effort directed toward the natural product curcusone C, the Stoltz group discovered an unexpected thermal rearrangement of a divinylcyclopropane to the product of a formal Cope/1,3-sigmatropic shift sequence. Since the involvement of a thermally forbidden 1,3-shift seemed unlikely, theoretical studies involving two approaches, the "trial-and-error" testing of various conceivable mechanisms (Houk group) and an "automatic" approach using the Maeda-Morokuma AFIR method (Morokuma group) were applied to explore the mechanism. Eventually, both approaches converged on a cascade mechanism shown to have some partial literature precedent: Cope rearrangement/1,5-sigmatropic silyl shift/Claisen rearrangement/retro-Claisen rearrangement/1,5-sigmatropic silyl shift, comprising a quintet of five sequential thermally allowed pericyclic rearrangements.
View Article and Find Full Text PDFAn improved method for the asymetric alkylation of 3-bromooxindoles with α-arylated malonate esters is described. The asymmetric alkylation demonstrated was achieved up to 70% ee utilizing a copper(II) bis(phosphine) complex.
View Article and Find Full Text PDFMacrolide magic: An enyne cross-metathesis reaction of an alkynyl boronate with an alkene derivative as well as a radical cyclization reaction of a homopropargylic beta-alkoxyacrylate are the key transformations in the total synthesis of the cytotoxic macrolide (-)-amphidinolide K.
View Article and Find Full Text PDF