Publications by authors named "Chung Soo Kim"

Hydrophobic surfaces have a wide range of applications, such as water harvesting, self-cleaning, and anti-biofouling. However, traditional methods of achieving hydrophobicity often involve the use of toxic materials such as fluoropolymers. This study aims to create controllable wettability surfaces with a three-dimensional geometry using a laser base powder bed fusion (PBF) process with commercially pure titanium (CP-Ti) and silicone oil as non-toxic materials.

View Article and Find Full Text PDF

Background: Patients with cartilage invasion in hypopharyngeal squamous cell carcinoma (HPSCC) would benefit from partial laryngopharyngectomy (PLP).

Aims/objectives: The purpose of this study was to examine the treatment outcomes of PLP for HPSCC with cartilage invasion, with a focus on the oncological safety and the function preservation.

Materials And Methods: We performed a retrospective review of 28 patients with HPSCC with thyroid or cricoid cartilage invasion who had undergone upfront surgery and were followed for more than one year between 1993 and 2019.

View Article and Find Full Text PDF

It has been challenging to synthesize p-type SnO (1 < < 2) and engineer the electrical properties such as carrier density and mobility due to the narrow processing window and the localized oxygen 2p orbitals near the valence band. Herein, we report on the multifunctional encapsulation of p-SnO to limit the surface adsorption of oxygen and selectively permeate hydrogen into the p-SnO channel for thin-film transistor (TFT) applications. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements identified that ultrathin SiO as a multifunctional encapsulation layer effectively suppressed the oxygen adsorption on the back channel surface of p-SnO and selectively diffused hydrogen across the entire thickness of the channel.

View Article and Find Full Text PDF

Polydimethylsiloxane (PDMS) is widely utilised as a substrate for wearable (stretchable) electronics where high fatigue resistance is required. Cyclic loadings cause the rearrangement of the basic molecular structure of polymer chains, which leads to changes in the mechanical properties of the PDMS structure. Accordingly, it is necessary to investigate reliable mechanical properties of PDMS considering both monotonic and cyclic loading conditions.

View Article and Find Full Text PDF

Amorphous cobalt-calcium phosphate composite (CCPC) films are electrochemically prepared on various electrodes by utilizing the solid phase of hydroxyapatite as a phosphate source. The CCPC film formation is surface process in which the dissolution of hydroxyapatite and the deposition of CCPC film concurrently occur on the electrode surface without the mass transfer of phosphate ions into the bulk solution. Elemental, crystallographic, and morphological analyses (EDX, ICP-AES, XPS, and XRD) indicate that the CCPC is composed of amorphous cobalt oxide with calcium and phosphate.

View Article and Find Full Text PDF

Efficient water electrolysis is one of the key issues in realizing a clean and renewable energy society based on hydrogen fuel. However, several obstacles remain to be solved for electrochemical water splitting catalysts, which are the high cost of noble metals and the high overpotential of alternative catalysts. Herein, we suggest Ni-based alternative catalysts that have comparable performances with precious metal-based catalysts and could be applied to both cathode and anode by precise phase control of the pristine catalyst.

View Article and Find Full Text PDF

The fabrication of oxide-based p-n heterojunctions that exhibit high rectification performance has been difficult to realize using standard manufacturing techniques that feature mild vacuum requirements, low thermal budget processing, and scalability. Critical bottlenecks in the fabrication of these heterojunctions include the narrow processing window of p-type oxides and the charge-blocking performance across the metallurgical junction required for achieving low reverse current and hence high rectification behavior. The overarching goal of the present study is to demonstrate a simple processing route to fabricate oxide-based p-n heterojunctions that demonstrate high on/off rectification behavior, a low saturation current, and a small turn-on voltage.

View Article and Find Full Text PDF

The use of electron mirrors in aberration correction and surface-sensitive microscopy techniques such as low-energy electron microscopy has been established. However, in this work, by implementing an easy to construct, fully electrostatic electron mirror system under a sample in a conventional scanning electron microscope (SEM), we present a new imaging scheme which allows us to form scanned images of the top and bottom surfaces of the sample simultaneously. We believe that this imaging scheme could be of great value to the field of in-situ SEM which has been limited to observation of dynamic changes such as crack propagation and other surface phenomena on one side of samples at a time.

View Article and Find Full Text PDF

We report facile growth methods for high-quality monolayer and multilayer MoS films using MoOCl as the vapor-phase molecular Mo precursor. Compared to the conventional covalent solid-type Mo precursors, the growth pressure of MoOCl can be precisely controlled. This enables the selection of growth mode by adjusting growth pressure, which facilitates the control of the growth behavior as the growth termination at a monolayer or as the continuous growth to a multilayer.

View Article and Find Full Text PDF

The microstructural evolutions in self-catalyzed GaAs nanowires (NWs) were investigated by using in situ heating transmission electron microscopy (TEM). The morphological changes of the self-catalyst metal gallium (Ga) droplet, the GaAs NWs, and the atomic behavior at the interface between the self-catalyst metal gallium and GaAs NWs were carefully studied by analysis of high-resolution TEM images. The microstructural change of the Ga-droplet/GaAs-NWs started at a low temperature of ∼200 °C.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the different clinical characteristics among elderly coronavirus disease 2019 (COVID-19) patients with and without mental disorders in South Korea and determine if these characteristics have an association with underlying mental disorders causing mortality.

Method: A population-based comparative cohort study was conducted using the national claims database. Individuals aged ≥65 years with confirmed COVID-19 between January 1, 2020 and April 10, 2020 were assessed.

View Article and Find Full Text PDF

Oxygen (O)-mediated controlled radical polymerization was performed on surfaces under ambient conditions, enabling on-surface polymer brush growth under open-to-air conditions at room temperature in the absence of metal components. Polymerization of zwitterionic monomers using this O-mediated surface-initiated reversible addition fragmentation chain-transfer (O-SI-RAFT) method yielded hydrophilic surfaces that exhibited anti-biofouling effects. O-SI-RAFT polymerization can be performed on large surfaces under open-to-air conditions.

View Article and Find Full Text PDF

Electron beams can acquire designed phase modulations by passing through nanostructured material phase plates. These phase modulations enable electron wavefront shaping and benefit electron microscopy, spectroscopy, lithography, and interferometry. However, in the fabrication of electron phase plates, the typically used focused-ion-beam-milling method limits the fabrication throughput and hence the active area of the phase plates.

View Article and Find Full Text PDF

Organophotocatalytic C-C and C-B bond formation reactions of aryl halides have been developed in the presence of an organophotosensitizer, 3,7-di([1,1'-biphenyl]-4-yl)-10-(4-(trifluoromethyl)phenyl)-10-phenoxazine that has highly negative reduction potential at its photoexcited state. The developed reaction conditions are mild and allow the intermolecular C-C bond formation of the generated aryl radical with electron-rich (hetero)arenes and C-B bond formation with bis(pinacolato)diboron.

View Article and Find Full Text PDF

Targeted irradiation of nanostructures by a finely focused ion beam provides routes to improved control of material modification and understanding of the physics of interactions between ion beams and nanomaterials. Here, we studied radiation damage in crystalline diamond and silicon nanostructures using a focused helium ion beam, with the former exhibiting extremely long-range ion propagation and large plastic deformation in a process visibly analogous to blow forming. We report the dependence of damage morphology on material, geometry, and irradiation conditions (ion dose, ion energy, ion species, and location).

View Article and Find Full Text PDF

Sublimation is an interesting phenomenon that is frequently observed in nature. The thermal behavior of InAs NWs with As-face polarity and the [1[combining macron]1[combining macron]1[combining macron]] growth direction of the zinc blende structure were studied by using in situ transmission electron microscopy (TEM). In this study, the anisotropic morphological and atomistic evolution of InAs nanowires (NWs) was observed during decomposition.

View Article and Find Full Text PDF

Quantum electron microscopy (QEM) is a measurement approach that could reduce sample radiation damage, which represents the main obstacle to sub-nanometer direct imaging of molecules in conventional electron microscopes. This method is based on the exploitation of interaction-free measurements in an electron resonator. In this work, we present the design of a linear resonant electron cavity, which is at the core of QEM.

View Article and Find Full Text PDF

In this study, we investigated the effect of hydrocarbon species composition on carbon nanotube (CNT) growth using an iron catalyst by chemical vapor deposition. The atomic hydrogen and active carbon species from hydrocarbon affect to the nucleation and growth of CNT arrays. With increasing atomic hydrogen content, the interface layer distance of the CNTs decreased from 3.

View Article and Find Full Text PDF

Shape memory alloys (SMAs) are widely utilized as an actuation source in microscale devices, since they have a simple actuation mechanism and high-power density. However, they have limitations in terms of strain range and actuation speed. High-speed microscale SMA actuators are developed having diamond-shaped frame structures with a diameter of 25 µm.

View Article and Find Full Text PDF

Full three dimensional (3D) simulations of ion implantation are necessary in a wide range of nanoscience and nanotechnology applications to capture the increasing effect of ion leakage out of surfaces. Using a recently developed 3D Monte Carlo simulation code IM3D, we first quantify the relative error of the 1D approach in three applications of nano-scale ion implantation: (1) nano-beam for nitrogen-vacancy (NV) center creation, (2) implantation of nanowires to fabricate p-n junctions, and (3) irradiation of nano-pillars for small-scale mechanical testing of irradiated materials. Because the 1D approach fails to consider the exchange and leakage of ions from boundaries, its relative error increases dramatically as the beam/target size shrinks.

View Article and Find Full Text PDF

Micro- and nano-structuring have been highlighted over several decades in both science and engineering fields. In addition to continuous efforts in fabrication techniques, investigations in scalable nanomanufacturing have been pursued to achieve reduced feature size, fewer constraints in terms of materials and dimensional complexity, as well as improved process throughput. In this study, based on recent micro-/nanoscale fabrication processes, characteristics and key requirements for computer-aided design and manufacturing (CAD/CAM) systems for scalable nanomanufacturing were investigated.

View Article and Find Full Text PDF

Here, we optimized ultrathin films of granular NbN on SiO and of amorphous αWSi. We showed that hybrid superconducting nanowire single-photon detectors (SNSPDs) made of 2 nm thick αWSi films over 2 nm thick NbN films exhibit advantageous coexistence of timing (<5 ns reset time and 52 ps timing jitter) and efficiency (>96% quantum efficiency) performance. We discuss the governing mechanism of this hybridization via the proximity effect.

View Article and Find Full Text PDF

Progress in nanofabrication technology has enabled the development of numerous electron optic elements for enhancing image contrast and manipulating electron wave functions. Here, we describe a modular, self-aligned, amplitude-division electron interferometer in a conventional transmission electron microscope. The interferometer consists of two 45-nm-thick silicon layers separated by 20 μm.

View Article and Find Full Text PDF

Unlabelled: Biological materials are the result of years of evolution and possess a number of efficient features and structures. Researchers have investigated the possibility of designing biomedical structures that take advantage of these structural features. Insect shells, such as beetle shells, are among the most promising types of biological material for biomimetic development.

View Article and Find Full Text PDF

Histone modification plays a pivotal role on gene regulation, as regarded as global epigenetic markers, especially in tumor related genes. Hence, chemical approaches targeting histone-modifying enzymes have emerged onto the main stage of anticancer drug discovery. Here, we investigated the therapeutic potentials and mechanistic roles of the recently developed histone deacetylase inhibitor, CG200745, in non-small cell lung cancer cells.

View Article and Find Full Text PDF