Organ-confined prostate cancer of low-grade histopathology is managed with radiation, surgery, active surveillance, or watchful waiting and exhibits a 5-year overall survival (OS) of 95%, while metastatic prostate cancer (PCa) is incurable, holding a 5-year OS of 30%. Treatment options for advanced PCa-metastatic and non-metastatic-include hormone therapy that inactivates androgen receptor (AR) signaling, chemotherapy and genome-targeted therapy entailing synthetic lethality of tumor cells exhibiting aberrant DNA damage response, and immune checkpoint inhibition (ICI), which suppresses tumors with genomic microsatellite instability and/or deficient mismatch repair. Cancer genome sequencing uncovered novel somatic and germline mutations, while mechanistic studies are revealing their pathological consequences.
View Article and Find Full Text PDFHyperproliferation of prostate transition-zone epithelial and stromal cells leads to benign prostate hyperplasia (BPH), a prevalent pathology in elderly men. Senescent cells in BPH tissue induce a senescence-associated secretory phenotype (SASP) which, by generating inflamed microenvironment and reactive stroma, promotes leukocyte infiltration, cellular hyperproliferation and nodular prostate growth. We examined human prostate epithelial (BPH-1, PNT-1α) and stromal (HPS-19I) cells for SASP induction by ionizing radiation and assessed SASP's impacts on cell proliferation and on signal transducers that promote cellular growth, proliferation and survival.
View Article and Find Full Text PDFMetastatic castration-resistant prostate cancer (mCRPC) is a progressive, noncurable disease induced by androgen receptor (AR) upon its activation by tumor tissue androgen, which is generated from adrenal steroid dehydroepiandrosterone (DHEA) through intracrine androgen biosynthesis. Inhibition of mCRPC and early-stage, androgen-dependent prostate cancer by calcitriol, the bioactive vitamin D3 metabolite, is amply documented in cell culture and animal studies. However, clinical trials of calcitriol or synthetic analogs are inconclusive, although encouraging results have recently emerged from pilot studies showing efficacy of a safe-dose vitamin D3 supplementation in reducing tumor tissue inflammation and progression of low-grade prostate cancer.
View Article and Find Full Text PDFOrally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx (phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e.
View Article and Find Full Text PDFThe limited treatment option for recurrent prostate cancer and the eventual resistance to conventional chemotherapy drugs has fueled continued interest in finding new anti-neoplastic agents of natural product origin. We previously reported anti-proliferative activity of deoxypodophyllotoxin (DPT) on human prostate cancer cells. Using the PC-3 cell model of human prostate cancer, the present study reveals that DPT induced apoptosis via a caspase-3-dependent pathway that is activated due to dysregulated mitochondrial function.
View Article and Find Full Text PDFThe anticancer activity of salinomycin has evoked excitement due to its recent identification as a selective inhibitor of breast cancer stem cells (CSCs) and its ability to reduce tumor growth and metastasis in vivo. In prostate cancer, similar to other cancer types, CSCs and/or progenitor cancer cells are believed to drive tumor recurrence and tumor growth. Thus salinomycin can potentially interfere with the end-stage progression of hormone-indifferent and chemotherapy-resistant prostate cancer.
View Article and Find Full Text PDFSULT2A1 is a sulfo-conjugating phase II enzyme expressed at very high levels in the liver and intestine, the two major first-pass metabolic tissues, and in the steroidogenic adrenal tissue. SULT2A1 acts preferentially on the hydroxysteroids dehydroepiandrosterone, testosterone/dihydrotestosterone, and pregnenolone and on cholesterol-derived amphipathic sterol bile acids. Several therapeutic drugs and other xenobiotics, which include xenoestrogens, are also sulfonated by this cytosolic steroid/bile acid sulfotransferase.
View Article and Find Full Text PDF