Loss-of-function mutations in the human gene encoding the neuron-specific Ca channel Ca2.1 are linked to the neurological disease episodic ataxia type 2 (EA2), as well as neurodevelopmental disorders such as developmental delay and developmental epileptic encephalopathy. Disease-associated Ca2.
View Article and Find Full Text PDFAims: FKBP5 encodes FKBP51, which has been implicated in stress-related psychiatric disorders, and its expression is often increased under chronic stress, contributing to mental dysfunctions. However, the precise role of FKBP51 in brain inflammation remains unclear. This study aimed to investigate the role of FKBP51 in microglia-mediated inflammatory responses in the central nervous system.
View Article and Find Full Text PDFBackground: Mutations in the human gene encoding the neuron-specific Eag1 (K10.1; KCNH1) potassium channel are linked to congenital neurodevelopmental diseases. Disease-causing mutant Eag1 channels manifest aberrant gating function and defective protein homeostasis.
View Article and Find Full Text PDFBackground: Inflammation is a potential risk factor of mental disturbance. FKBP5 that encodes FK506-binding protein 51 (FKBP51), a negative cochaperone of glucocorticoid receptor (GR), is a stress-inducible gene and has been linked to psychiatric disorders. Yet, the role of FKBP51 in the inflammatory stress-associated mental disturbance remained unclear.
View Article and Find Full Text PDFLoss-of-function mutations in the K4.3 channel-encoding gene are linked to neurodegenerative cerebellar ataxia. Patients suffering from neurodegeneration associated with iron deposition may also present with cerebellar ataxia.
View Article and Find Full Text PDFThe ClC-2 channel plays a critical role in maintaining ion homeostasis in the brain and the testis. Loss-of-function mutations in the ClC-2-encoding human gene are linked to the white matter disease leukodystrophy. -deficient mice display neuronal myelin vacuolation and testicular degeneration.
View Article and Find Full Text PDFencodes the voltage-gated potassium channel K4.3 that is highly expressed in the cerebellum, where it regulates dendritic excitability and calcium influx. Loss-of-function K4.
View Article and Find Full Text PDFMutations in the human gene encoding the neuron-specific Eag1 voltage-gated K channel are associated with neurodevelopmental diseases, indicating an important role of Eag1 during brain development. A disease-causing Eag1 mutation is linked to decreased protein stability that involves enhanced protein degradation by the E3 ubiquitin ligase cullin 7 (CUL7). The general mechanisms governing protein homeostasis of plasma membrane- and endoplasmic reticulum (ER)-localized Eag1 K channels, however, remain unclear.
View Article and Find Full Text PDFIschemia/reperfusion is a key feature of acute ischemic stroke, which causes neuron dysfunction and death. Exosomes, small extracellular vesicles produced by most cell types, are implicated in the mediation of cellular interactions with their environment. Here, we investigated the contents and functions of exosomes from neurons under ischemic reperfusion injury.
View Article and Find Full Text PDFVoltage-gated ClC-2 channels are essential for chloride homeostasis. Complete knockout of mouse ClC-2 leads to testicular degeneration and neuronal myelin vacuolation. Gain-of-function and loss-of-function mutations in the ClC-2-encoding human gene are linked to the genetic diseases aldosteronism and leukodystrophy, respectively.
View Article and Find Full Text PDFThe voltage-dependent ClC-1 chloride channel, whose open probability increases with membrane potential depolarization, belongs to the superfamily of CLC channels/transporters. ClC-1 is almost exclusively expressed in skeletal muscles and is essential for stabilizing the excitability of muscle membranes. Elucidation of the molecular structures of human ClC-1 and several CLC homologs provides important insight to the gating and ion permeation mechanisms of this chloride channel.
View Article and Find Full Text PDFMutations in the human voltage-gated K channel subunit K 4.3-encoding KCND3 gene have been associated with the autosomal dominant neurodegenerative disorder spinocerebellar ataxia types 19 and 22 (SCA19/22). The precise pathophysiology underlying the dominant inheritance pattern of SCA19/22 remains elusive.
View Article and Find Full Text PDFMutations in the skeletal muscle-specific CLC-1 chloride channel are associated with the human hereditary disease myotonia congenita. The molecular pathophysiology underlying some of the disease-causing mutations can be ascribed to defective human CLC-1 protein biosynthesis. CLC-1 protein folding is assisted by several molecular chaperones and co-chaperones, including FK506-binding protein 8 (FKBP8).
View Article and Find Full Text PDFVoltage-gated Ca2.1 channels comprise a pore-forming α subunit with auxiliary αδ and β subunits. Ca2.
View Article and Find Full Text PDFMammalian Eag1 (Kv10.1) potassium (K) channels are widely expressed in the brain. Several mutations in the gene encoding human Eag1 K channel have been associated with congenital neurodevelopmental anomalies.
View Article and Find Full Text PDFEag1 is neuron-specific K(+) channel abundantly expressed in the brain and retina. Subcellular localization and physiological analyses in neurons reveal that Eag1 may participate in Ca(2+)-signaling processes in the synapse. Here, we searched for rat Eag1 (rEag1)-binding proteins that may contribute to Ca(2+) regulation of the K(+) channel.
View Article and Find Full Text PDFIn the present study, the role of autophagy in sodium arsenite (arsenite)-induced neurotoxicity was investigated in rat primary cultured cortical neurons. Incubation with arsenite concentration-dependently increased LC3-II levels (a biomarker of autophagy), indicating that arsenite is capable of inducing autophagy. Co-localization of fluorescent puncta of monodansylcadaverine (a fluorescent dye of autophagic vacuoles) and LysoTracker Red (a fluorescent dye of lysosomes) as well as chloroquine-induced enhancement of arsenite-elevated LC3-II levels suggest that arsenite induced autolysosome formation in primary cultured cortical neurons.
View Article and Find Full Text PDFEag (Kv10) and Erg (Kv11) belong to two distinct subfamilies of the ether-à-go-go K+ channel family (KCNH). While Erg channels are characterized by an inward-rectifying current-voltage relationship that results from a C-type inactivation, mammalian Eag channels display little or no voltage-dependent inactivation. Although the amino (N)-terminal region such as the eag domain is not required for the C-type inactivation of Erg channels, an N-terminal deletion in mouse Eag1 has been shown to produce a voltage-dependent inactivation.
View Article and Find Full Text PDFA functional voltage-gated K(+) (Kv) channel comprises four pore-forming α-subunits, and only members of the same Kv channel subfamily may co-assemble to form heterotetramers. The ether-à-go-go family of Kv channels (KCNH) encompasses three distinct subfamilies: Eag (Kv10), Erg (Kv11), and Elk (Kv12). Members of different ether-à-go-go subfamilies, such as Eag and Erg, fail to form heterotetramers.
View Article and Find Full Text PDFBackground: In mammals, Eag K+ channels (KV10) are exclusively expressed in the brain and comprise two isoforms: Eag1 (KV10.1) and Eag2 (KV10.2).
View Article and Find Full Text PDFThe astrocytic syncytium plays a critical role in maintaining the homeostasis of the brain through the regulation of gap junction intercellular communication (GJIC). Changes to GJIC in response to inflammatory stimuli in astrocytes may have serious effects on the brain. We have previously shown that lipopolysaccharide (LPS) reduces connexin43 (Cx43) expression and GJIC in cultured rat astrocytes via a toll-like receptor 4-mediated signaling pathway.
View Article and Find Full Text PDFBackground: Daidzein, a phytoestrogen found in isoflavone, is known to exert neurotrophic and neuroprotective effects on the nervous system. Using primary rat dorsal root ganglion (DRG) neuronal cultures, we have examined the potential neurite outgrowth effect of daidzein.
Methods: Dissociated dorsal root ganglia (DRG) cultures were used to study the signaling mechanism of daidzein-induced neuritogenesis by immunocytochemistry and Western blotting.
The ether-à-go-go (Eag) potassium (K(+)) channel belongs to the superfamily of voltage-gated K(+) channel. In mammals, the expression of Eag channels is neuron-specific but their neurophysiological role remains obscure. We have applied the yeast two-hybrid screening system to identify rat Eag1 (rEag1)-interacting proteins from a rat brain cDNA library.
View Article and Find Full Text PDFThe assembly of four pore-forming α-subunits into tetramers is a prerequisite for the formation of functional K(+) channels. A short carboxyl assembly domain (CAD) in the distal end of the cytoplasmic carboxyl terminus has been implicated in the assembly of Eag α-subunits, a subfamily of the ether-à-go-go K(+) channel family. The precise role of CAD in the formation of Eag tetrameric channels, however, remains unclear.
View Article and Find Full Text PDF