Paper-based microfluidic devices with screen-printed electrodes (SPEs) for electrochemical sensing are popular for low-cost point-of-care diagnostics. The electroactive sensing area in these devices is always the irregular, bottom-SPE surface which is in contact with the analyte flowing within the paper substrate. Unfortunately, this results in an electroactive area which varies widely from sensor to sensor.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
Recent research activities in the area of low-cost sensing and diagnostics that are realized on cellulosic paper substrate are presented. First a three-dimensional origami paper-based analytical device (omPAD) with multiple electrochemical sensors, an integrated sample reservoir and tight integration with a custom CMOS potentiostat is presented. Second, an optical sensor array with built-in microfluidic channel for sample delivery is presented.
View Article and Find Full Text PDFA facile, site-specific viral-templated assembly method was used to fabricate sensitive hydrogen sulfide (H2S) gas sensors at room temperature. A gold-binding M13 bacteriophage served to organize gold nanoparticles into linear arrays which were used as seeds for subsequent nanowire formation through electroless deposition. Nanowire widths and densities within the sensors were modified by electroless deposition time and phage concentration, respectively, to tune device resistance.
View Article and Find Full Text PDFThe growth of crystalline copper sulfide using a viral template was investigated using sequential incubation in CuCl2 and Na2S precursors. Non-specific electrostatic attraction between a genetically-modified M13 bacteriophage and copper cations in the CuCl2 precursor caused phage agglomeration and bundle formation. Following the addition of Na2S, polydisperse nanocrystals 2-7 nm in size were found along the length of the viral scaffold.
View Article and Find Full Text PDFalpha-Synuclein, the pathological component of Parkinson's disease, has been demonstrated to be highly interactive with various protein partners. alpha-Synuclein has been shown to exert a novel effect on the bioluminescence of firefly luciferase by stimulating the oxyluciferin formation from its substrate of luciferin, which results in a significant enhancement of the spike of flashing light via concomitant augmentation for both rapid rise and quick decay of the luminescence. Binding affinity between alpha-synuclein and luciferase was evaluated with K(d) of 8.
View Article and Find Full Text PDF