Publications by authors named "Chunfang Chao"

Although soluble bio-accelerators have proven effective in mitigating Cr(VI) inhibition within denitrification system, issues persist in immobilizing bio-accelerators and making them slow-release for sustained regulation. In this study, a novel strategy was proposed to fabricate immobilized bio-accelerators with controlled structure, sustained release property by 3D printing technology. Notably, the sustained release of bio-accelerators from 3D-printed bio-accelerators (3DP-B) lasted for at least 144 h.

View Article and Find Full Text PDF

Halogenated aromatic compounds possess bidirectional effects on denitrifying bio-electron behavior, providing electrons and potentially interfering with electron consumption. This study selected the typical 4-chlorophenol (4-CP, 0-100 mg/L) to explore its impact mechanism on glucose-supported denitrification. When COD/COD=28.

View Article and Find Full Text PDF

Background: Psychrophilic bacteria can survive in a unique living environment.

Objective: To explore the mechanism of low temperature adaptation and the physiological function of thermophilic metabolic genes.

Method: Serratia marcescens strain F13 stored in microbial laboratory was cultured at 5∘C, 10∘C and 25∘C respectively, and the obtained strains were sequenced by high-throughput transcriptome.

View Article and Find Full Text PDF

Although the biotoxicity of heavy metals has been widely studied, there are few reports on the recovery strategy of the inhibited bio-system. This study proposed a combined promoter-I (Primary promoter: l-cysteine, biotin, and cytokinin + Electron-shuttle: PMo) to recover the denitrification suppressed by Cr(VI). Compared with self-recovery, combined promoter-I shortened the recovery time of 28 cycles, and the recovered reactor possessed more stable long-term operation performance with >95 % nitrogen removal.

View Article and Find Full Text PDF