Publications by authors named "Chunfa Jie"

Introduction: Dual-expressing lymphocytes (DEs) are unique immune cells that express both B cell receptors (BCRs, surface antibody) and T cell receptors (TCRs). In type 1 diabetes, DE antibodies are predominated by one antibody (x-mAb), an IgM monoclonal antibody with a germline-encoded CDR3 that recognizes self-reactive TCRs. We explored if x-mAb and its interacting TCRs have distinct structural features.

View Article and Find Full Text PDF

Understanding the roles of different cell types in regulating T cell homeostasis in various tissues is critical for understanding adaptive immunity. Here, we show that RTECs (renal tubular epithelial cells) are intrinsically programmed to polyclonally stimulate proliferation of kidney αβ T cells by a cell-cell contact mechanism that is major histocompatibility complex (MHC) independent and regulated by CD155, αVβ3-integrin, and vitronectin. Peripheral CD4 and CD8 are resistant to RTEC-mediated stimulation, while the minor subset of double-negative (DN) T cells are responsive.

View Article and Find Full Text PDF

Pediatric high-grade gliomas (pHGGs) are common malignant brain tumors without effective treatment and poor patient survival. Abnormal posttranslational modification at the histone H3 tail plays critical roles in tumor cell malignancy. We have previously shown that the trimethylation of lysine 4 at histone H3 (H3K4me3) plays a significant role in pediatric ependymoma malignancy and is associated with tumor therapeutic sensitivity.

View Article and Find Full Text PDF

Purpose: Contact-based education, offering meaningful contact with individuals living in recovery with mental illness, reduces stigma. This study evaluated the effectiveness of the National Alliance on Mental Illness Provider Education Program (NAMI PEP) when implemented as a curricular requirement across two cohorts of third-year osteopathic medical students, comparing traditional, passive learning and active, online delivery formats.

Materials And Methods: Participants were two cohorts of third-year medical students (Cohort 1 n = 186; Cohort 2 n = 139; overall N = 325) who completed questionnaires measuring affect, beliefs, and behaviors toward patients with mental illness at pre-program, 1-week follow-up, and 6-month follow-up.

View Article and Find Full Text PDF

Increasing evidence shows pathophysiological significance of rare immune cells, necessitating the need for reliable and proper methods for their detection and analysis. We have recently identified a new lymphocyte that coexpresses lineage markers of T- and B-cells including T cell receptor and B cell receptor (called dual expressers, DEs). Because of the peculiar phenotype of DEs, we used multiple techniques to authenticate their identity (fluorescence-activated cell sorting [FACS], scRNAseq, EBV cell lines, and imaging flow cytometry).

View Article and Find Full Text PDF

Itraconazole, an FDA-approved antifungal, has antitumor activity against a variety of cancers. We sought to determine the effects of itraconazole on esophageal cancer and elucidate its mechanism of action. Itraconazole inhibited cell proliferation and induced G-phase cell-cycle arrest in esophageal squamous cell carcinoma and adenocarcinoma cell lines.

View Article and Find Full Text PDF

Genetic deletion of Src associated in mitosis of 68kDa (Sam68), a pleiotropic adaptor protein prevents high-fat diet-induced weight gain and insulin resistance. To clarify the role of Sam68 in energy metabolism in the adult stage, we generated an inducible Sam68 knockout mice. Knockout of Sam68 was induced at the age of 7-10 weeks, and then we examined the metabolic profiles of the mice.

View Article and Find Full Text PDF

We have recently identified a novel lymphocyte that is a dual expresser (DE) of TCRαβ and BCR. DEs in T1D patients are predominated by a public BCR clonotype (clone-x) that encodes a potent autoantigen that cross-activates insulin-reactive T cells. Betts and colleagues were able to detect DEs but alleged to not detect high DE frequency, clone-x, or similar clones in T1D patients.

View Article and Find Full Text PDF

Cell therapy for myocardial infarction is promising but largely unsuccessful in part due to a lack of mechanistic understanding. Techniques enabling identification of stem cell-specific proteomes in the injured heart may shed light on how the administered cells respond to the injured microenvironment and exert reparative effects. To identify the proteomes of the transplanted mesenchymal stem cells (MSCs) in the infarcted myocardium, we sought to target a mutant methionyl-tRNA synthetase (MetRS) in MSCs, which charges azidonorleucine (ANL), a methionine analogue and non-canonical amino acid, to tRNA and subsequently to nascent proteins, permitting isolation of ANL-labeled MSC proteomes from ischemic hearts by ANL-alkyne based click reaction.

View Article and Find Full Text PDF

Objective: To assess knowledge of the Zika virus (ZIKV), use of contraceptives, and sources of health information in rural communities in the Dominican Republic.

Methods: Over 4 days in March 2017, a research team traveled to four rural communities in the Dominican Republic to provide healthcare services. Overall, 90 men and women consented to a voluntary verbal 12-question survey.

View Article and Find Full Text PDF

Gastroesophageal junction (GEJ) cancer remains a clinically significant disease in Western countries due to its increasing incidence, which mirrors that of esophageal cancer, and poor prognosis. To develop novel and effective approaches for prevention, early detection, and treatment of patients with GEJ cancer, a better understanding of the mechanisms driving pathogenesis and malignant progression of this disease is required. These efforts have been limited by the small number of available cell lines and appropriate preclinical animal models for in vitro and in vivo studies.

View Article and Find Full Text PDF

Study Objective: To investigate the frequency of Beers Criteria (BC) medication and opioid use in patients age 65 years and older arriving in the Emergency Department.

Methods: We performed a retrospective observational study of a convenience sample of 400 patients, age 65 years and older, arriving to and discharged solely from the Emergency Department. We examined 400 sequential patient charts with visit dates April-July 2017, for the presence of a Beers Criteria medication or opioid prescription.

View Article and Find Full Text PDF

Background: Ependymomas (EPNs) are the third most common brain tumor in children. These tumors are resistant to available chemotherapeutic treatments, therefore new effective targeted therapeutics must be identified. Increasing evidence shows epigenetic alterations including histone posttranslational modifications (PTMs), are associated with malignancy, chemotherapeutic resistance and prognosis for pediatric EPNs.

View Article and Find Full Text PDF

It is postulated that the complexity and heterogeneity in cancer may hinder most efforts that target a single pathway. Thus, discovery of novel therapeutic agents targeting multiple pathways, such as miRNAs, holds promise for future cancer therapy. One such miRNA, miR-489, is downregulated in a majority of breast cancer cells and several drug-resistant breast cancer cell lines, but its role and underlying mechanism for tumor suppression and drug resistance needs further investigation.

View Article and Find Full Text PDF

Systemic inflammation in breast cancer correlates with poor prognosis, but the molecular underpinnings of this connection are not well understood. In this study, we explored the relationship between HER2 overexpression, inflammation, and expansion of the mammary stem/progenitor and cancer stem-like cell (CSC) population in breast cancer. HER2-positive epithelial cells initiated and sustained an inflammatory milieu needed to promote tumorigenesis.

View Article and Find Full Text PDF

Deficiency in complement component C1q is associated with an inability to clear apoptotic cells (efferocytosis) and aberrant inflammation in lupus, and identification of the pathways involved in these processes should reveal important regulatory mechanisms in lupus and other autoimmune or inflammatory diseases. In this study, C1q-dependent regulation of TNFα/IL-6 expression and efferocytosis was investigated using primary mouse bone marrow-derived macrophages and human monocyte-derived macrophages. C1q downregulated LPS-dependent TNFα production in mouse and human macrophages.

View Article and Find Full Text PDF

Human epidermal growth factor receptor 2 (HER2 or ErBb2) is a receptor tyrosine kinase overexpressed in 20-30% of breast cancers and associated with poor prognosis and outcome. Dysregulation of several microRNAs (miRNAs) plays a key role in breast cancer progression and metastasis. In this study, we screened and identified miRNAs dysregualted in HER2-positive breast cancer cells.

View Article and Find Full Text PDF

Reactivation of latent human cytomegalovirus is a significant infectious complication of organ transplantation and current therapies target viral replication once reactivation of latent virus has already occurred. The specific molecular pathways that activate viral gene expression in response to transplantation are not well understood. Our studies aim to identify these factors, with the goal of developing novel therapies that prevent transcriptional reactivation in transplant recipients.

View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) is a major cause of AKI, and previous studies established important roles for conventional CD4(+) T cells, natural killer T cells, and CD4(+)CD25(+)FoxP3(+) Tregs in AKI pathogenesis. We recently identified CD4(-)CD8(-) (double-negative; DN) T cells as an important subset of αβ T cell receptor-positive cells residing in mouse kidney. However, little is known about the pathophysiologic functions of kidney DN T cells.

View Article and Find Full Text PDF

Invariant natural killer T (iNKT) cells recognize glycolipids as antigens and diversify into NKT1 (IFN-γ), NKT2 (IL-4), and NKT17 (IL-17) functional subsets while developing in the thymus. Mechanisms that govern the balance between these functional subsets are poorly understood due, partly, to the lack of distinguishing surface markers. Here we identify the heparan sulfate proteoglycan syndecan-1 (sdc1) as a specific marker of naïve thymic NKT17 cells in mice and show that sdc1 deficiency significantly increases thymic NKT17 cells at the expense of NKT1 cells, leading to impaired iNKT cell-derived IFN-γ, both in vitro and in vivo.

View Article and Find Full Text PDF

We provide evidence that the Unc-51-like kinase 1 (ULK1) is activated during engagement of the type I interferon (IFN) receptor (IFNR). Our studies demonstrate that the function of ULK1 is required for gene transcription mediated via IFN-stimulated response elements (ISRE) and IFNγ activation site (GAS) elements and controls expression of key IFN-stimulated genes (ISGs). We identify ULK1 as an upstream regulator of p38α mitogen-activated protein kinase (MAPK) and establish that the regulatory effects of ULK1 on ISG expression are mediated possibly by engagement of the p38 MAPK pathway.

View Article and Find Full Text PDF

The myeloid differentiation protein 88 (MyD88) adapter protein is an important mediator of kidney allograft rejection, yet the precise role of MyD88 signaling in directing the host immune response toward the development of kidney allograft rejection remains unclear. Using a stringent mouse model of allogeneic kidney transplantation, we demonstrated that acute allograft rejection occurred equally in MyD88-sufficient (wild-type [WT]) and MyD88(-/-) recipients. However, MyD88 deficiency resulted in spontaneous diminution of graft infiltrating effector cells, including CD11b(-)Gr-1(+) cells and activated CD8 T cells, as well as subsequent restoration of near-normal renal graft function, leading to long-term kidney allograft acceptance.

View Article and Find Full Text PDF

Overexpression of HOXB7 in breast cancer cells induces an epithelial-mesenchymal transition and promotes tumor progression and lung metastasis. However, the underlying mechanisms for HOXB7-induced aggressive phenotypes in breast cancer remain largely unknown. Here, we report that phosphorylation of SMAD3 was detected in a higher percentage in primary mammary tumor tissues from double-transgenic MMTV-Hoxb7/Her2 mice than tumors from single-transgenic Her2/neu mice, suggesting activation of TGFβ/SMAD3 signaling by HOXB7 in breast tumor tissues.

View Article and Find Full Text PDF