Publications by authors named "Chundi Gao"

The organic compound composition of wastewater, serves as a crucial indicator for the operational performance of activated sludge processes and has a major influence on the development of filamentous bulking in activated sludge. This study focused on the impact of typical soluble and slowly-biodegradable organic compounds, investigating the pathways through which these substrates affect the occurrence of filamentous bulking in systems operated under both high- and low-oxygen conditions. Results showed that slowly-biodegradable organic compounds lead to a concentrated distribution of microorganisms within flocs, with inward growth of filamentous bacteria.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the connection between regulatory T cell (Treg) immune traits and autoimmune diseases (ADs) complicated by non-Hodgkin lymphoma (NHL), using extensive GWAS data to explore potential causal relationships.
  • - Through various statistical methods, the research found genetic predispositions linking certain Treg traits, specifically CD39+ CD8br immune traits, to an increased risk of diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL).
  • - Additional findings suggested correlations between Treg subsets and diseases like systemic lupus erythematosus (SLE) and Crohn's disease (CD), while confirming that sensitivity analyses reinforced the reliability of these causal associations.
View Article and Find Full Text PDF

In Chinese medicine, the Cucurbitaceae family contains many compounds known as cucurbitacins, which have been categorized into 12 classes ranging from A to T and more than 200 derivatives. Cucurbitacins are a class of highly oxidized tetracyclic triterpenoids with potent anticancer properties. The eight components of cucurbitacins with the strongest anticancer activity are cucurbitacins B, D, E, I, IIa, L-glucoside, Q, and R.

View Article and Find Full Text PDF
Article Synopsis
  • The Wnt/β-catenin pathway is often overactive in lung cancer, promoting tumor growth and resistance to treatment, which contributes to higher disease rates and severe outcomes.
  • Despite its potential as a target for therapy, challenges like tumor diversity and pathway complexity complicate effective treatment development.
  • This study reviews various natural products and compounds that inhibit the Wnt/β-catenin pathway, highlighting their promising anticancer effects and lower toxicity, suggesting their potential for safer, more efficient lung cancer therapies.
View Article and Find Full Text PDF

With the rapid development of next-generation sequencing technology, several studies have shown that ncRNAs can act as competitive endogenous RNAs (ceRNAs) and are involved in various biological processes, such as proliferation, differentiation, apoptosis, and migration of breast cancer (BC) cells, and plays an important role in BC progression as a molecular target for its diagnosis, treatment, prognosis, and differentiation of subtypes and age groups of BC patients. Based on the description of ceRNA-related biological functions, this study screened and sorted the sequencing analysis and experimental verification conclusions of BC-related ceRNAs and found that the ncRNAs mediated ceRNA networks can promote the development of BC by promoting the expression of genes related to BC proliferation, drug resistance, and apoptosis, inducing the production of epithelial-mesenchymal transition (EMT) to promote metastasis and activating cancer-related signaling pathways.

View Article and Find Full Text PDF

Harnessing the broad immunostimulatory capabilities of chemotherapy in combination with immune checkpoint inhibitors has improved immunotherapy outcomes in patients with cancer. Certain chemotherapeutic agents can extensively modify the tumor microenvironment (TME), resulting in the reprogramming of local immune responses. Although chemotherapeutic agents with an enhanced generation of potent anti-tumor immune responses have been tested in preclinical animal models and clinical trials, this strategy has not yet shown substantial therapeutic efficacy in selected difficult-to-treat cancer types.

View Article and Find Full Text PDF

The effect of pyroptosis-related genes (PRGs) on the tumor microenvironment (TME) in lung adenocarcinoma (LUAD) remains unclear. Thus, this study is aimed at evaluating the prognostic value of PRGs in patients with LUAD and to elucidate their role in the TME and their effect on immunotherapy. Transcriptomic and clinical data were obtained from the Cancer Genome Atlas and the Gene Expression Omnibus databases (GSE3141, GSE31210).

View Article and Find Full Text PDF

High-throughput next-generation sequencing (NGS) provides insights into genome-wide mutations and can be used to identify biomarkers for the prediction of immune and targeted responses. A deeper understanding of the molecular biological significance of genetic variation and effective interventions is required and ultimately needs to be associated with clinical benefits. We conducted a retrospective observational study of patients in two cancer cohorts who underwent NGS in a "real-world" setting.

View Article and Find Full Text PDF

Background: The incidence of squamous lung cancer (LUSC) has substantially increased. Systematic studies of metabolic genomic patterns are fundamental for the treatment and prediction of LUSC. Because cancer metabolism and immune cell metabolism have been studied in depth, metabolism and the state and function of immune cells have become key factors in tumor development.

View Article and Find Full Text PDF

The recent application of targeted immunotherapy has greatly improved the clinical outcomes of patients with lung adenocarcinoma (LUAD), but drug resistance continues to emerge, and to evaluate and to improve patient prognosis are arduous. The diagnostic and prognostic value of N6-methyladenosine (M6A) in LUAD has attracted increasing attention. We systematically studied correlations among important M6A methylation regulators, tumor mutational burden (TMB), and immune infiltration in clinical and sequencing data from the LUAD cohort of the cancer genome map (TCGA).

View Article and Find Full Text PDF
Article Synopsis
  • Filamentous bacteria contribute to sludge bulking in wastewater treatment but also aid in forming stable sludge particles, crucial for effective treatments.
  • Research shows that bulking sludge forms granules faster and larger than flocculated sludge, with bulking achieving maturity in just 20 days compared to 40 days for flocculated sludge.
  • The presence of specific hydrophobic bacteria boosted rapid granulation and enhanced overall removal rates for pollutants like COD, NH-N, and TN in bulking sludge compared to flocculated sludge.
View Article and Find Full Text PDF

Human epidermal growth factor receptor 2 (HER2)-positive breast cancer and triple-negative breast cancer have their own genetic, epigenetic, and protein expression profiles. In the present study, based on bioinformatics techniques, we explored the prognostic targets of HER2-positive breast cancer from metabonomics perspective and developed a new risk score system to evaluate the prognosis of patients. By identifying the differences between HER2 positive and normal control tissues, and between triple negative breast cancer and normal control tissues, we found a large number of differentially expressed metabolic genes in patients with HER2-positive breast cancer and triple-negative breast cancer.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) presented as high heterogeneous immunogenicity that lacks useful clinical signatures to risk-stratify immune-benefit subtypes. We hypothesized that molecular-based phenotypic characterization of TNBC tumors and their immunity may overcome these challenges. We enrolled 1,145 patients with TNBC for analysis.

View Article and Find Full Text PDF

The role of N6-methyladenine (mA) RNA methylation in a variety of biological processes is gradually being revealed. Here, we systematically describe the correlation between the expression pattern of mA RNA methylation regulatory factors and clinical phenotype, immunity, drug sensitivity, stem cells and prognosis in more than 10,000 samples of 33 types of cancer. The results show that there are significant differences in the expression of 20 mA RNA methylation regulatory factors in different cancers, and there was a significant correlation with the analysis indicators.

View Article and Find Full Text PDF

The high heterogeneity of breast cancer (BRCA) makes it more challenging to interpret the genetic variation mechanisms involved in BRCA pathogenesis and prognosis. Areas with high DNA methylation (such as CpG islands) were accompanied by copy number variation (CNV), and these genomic variations affected the level of DNA methylation. In this study, we characterized intertumor heterogeneity and analyzed the effects of CNV on DNA methylation and gene expression.

View Article and Find Full Text PDF

In view of the high malignancy and poor prognosis of human epidermal growth factor receptor 2 (HER2)-positive breast cancer, we analyzed the RNA expression profiles of HER2-positive breast cancer samples to identify the new prognostic biomarkers. The linear fitting method was used to identify the differentially expressed RNAs from the HER2-positive breast cancer RNA expression profiles in the Cancer Genome Atlas (TCGA). Then, a series of methods including univariate Cox, Kaplan-Meier, and random forests, were used to identify the core long non-coding RNAs (lncRNAs) with stable prognostic value for HER2-positive breast cancer.

View Article and Find Full Text PDF

The composition and structure of dissolved organic matter (DOM) play vital roles in the material cycle of river ecosystems. Based on ultraviolet-visible absorption spectroscopy, excitation-emission matrix fluorescence spectroscopy, and ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry technology, this study comprehensively characterized the composition and structure of DOM in the overlying water of the Chaobai River in order to determine the potential environmental impact of DOM on the water quality. The results showed that the DOM content of the overlying water in the Chaobai River was between 10.

View Article and Find Full Text PDF

In recent years, the emergence of immunotherapy has provided a new perspective for the treatment and management of triple-negative breast cancer (TNBC). However, the relationship between tumor mutation burden (TMB) and immune infiltration and the prognosis of TNBC remains unclear. In this study, to explore the immunogenicity of TNBC, we divided patients with TNBC into high and low TMB groups based on the somatic mutation data of TNBC in The Cancer Genome Atlas (TCGA), and screened out genes with mutation rate ≥10.

View Article and Find Full Text PDF

Glycolysis is critical in the occurrence and development of tumors. Owing to the biological and clinical heterogeneity of patients with BRCA, the traditional predictive classification system is far from satisfactory. Survival and prognosis biomarkers related to glycolysis have broad application prospects for assessing the risk of patients and guiding their individualized treatment.

View Article and Find Full Text PDF

Cryptotanshinone (IUPAC name: (R)-1,2,6,7,8,9-hexahydro-1,6,6-trimethyl-phenanthro(1,2-b)furan-10,11-dione), a biologically active constituent extracted from the roots and rhizomes of the plant Salvia miltiorrhiza, has been studied in depth as a medicinally active compound and shown to have efficacy in the treatment of numerous diseases and disorders. In this review, we describe in detail the current status of cryptotanshinone research, including findings relating to the structure, pharmacokinetics, pharmacological activity, and derivatives of this compound. Cryptotanshinoneh as a diverse range of pharmacological effects, including anti-cancer, anti-inflammatory, immune regulatory, neuroprotective, and anti-fibrosis activities.

View Article and Find Full Text PDF

Resistance to endocrine therapy has hampered clinical treatment in patients with ER-positive breast cancer (BRCA). Studies have confirmed that cryptotanshinone (CPT) has cytotoxic effects on BRCA cells and can significantly inhibit the proliferation and metastasis of ER-positive cancer cells. We analyzed the gene high-throughput data of ER-positive and negative BRCA to screen out key gene targets for ER-positive BRCA.

View Article and Find Full Text PDF

Background: Invasive breast cancer is a highly heterogeneous tumor, although there have been many prediction methods for invasive breast cancer risk prediction, the prediction effect is not satisfactory. There is an urgent need to develop a more accurate method to predict the prognosis of patients with invasive breast cancer.

Objective: To identify potential mRNAs and construct risk prediction models for invasive breast cancer based on bioinformaticsMETHODS: In this study, we investigated the differences in mRNA expression profiles between invasive breast cancer and normal breast samples, and constructed a risk model for the prediction of prognosis of invasive breast cancer with univariate and multivariate Cox analyses.

View Article and Find Full Text PDF

Although the emergence of new treatments has improved the prognosis of women with lung adenocarcinoma (LUAD), the emergence of drug resistance limits their clinical efficacy. Therefore, there is an urgent need to identify new targets and develop a risk scoring system to evaluate the prognosis of patients. 6-methyladenine (M6A), as the most common methyl modification in RNA modification, its clinicopathological features, diagnosis and prognostic value in lung cancer, especially in LUAD remain to be discussed.

View Article and Find Full Text PDF

Background: Long noncoding RNAs (lncRNAs) act as competing endogenous RNAs for microRNAs in cancer metastasis. However, the roles of lncRNA-mediated competing endogenous RNA (ceRNA) networks for breast cancer (BC) are still unclear. .

View Article and Find Full Text PDF

To investigate the characteristics of microbial diversity during filamentous bulking at low temperature, the induction of sludge bulking was successfully carried out using a low-temperature sequencing batch reactor(SBR). With the help of Illumina MiSeq high-throughput sequencing technology, the overall changes in the microbial community structure of activated sludge, the characteristics of each specific microbial community, and the specific genera were all investigated under different sludge sedimentation performances. The results showed that filamentous bulking can be successfully induced after the system operating temperature drops to (14±1)℃, and the COD and TN removal rates can still be maintained at approximately 90% and 86%, respectively, with the sludge volume index deteriorating to 663.

View Article and Find Full Text PDF