The excessive aggregation of magnetic metal particles and the resulting skin effect tend to cause a serious imbalance in impedance matching, which hinders its application in aerospace and military wave absorption fields. Obviously, effective dispersion configuration and network construction are two practical measures to develop broadband lightweight absorbers. Based on the recycling theme, pomegranate plasma heterostructure regulated one-dimensional (1D) biomass derived microtube networks are achieved through the conversion and utilization of waste Platanus ball fibers.
View Article and Find Full Text PDFElectromagnetic waves have an irreplaceable role as information carriers in civil and radar stealth fields, but they also lead to electromagnetic pollution and electromagnetic leakage. Therefore, electromagnetic wave absorbing materials that can reduce electromagnetic radiation have come into being. Especially, SnO has made a wave among many wave-absorbing materials as an easily tunable dielectric material, but it hardly has both broadband and powerful absorption properties.
View Article and Find Full Text PDFThe intrinsic brittleness and poor damage tolerance of ultrahigh-temperature ceramics are the key obstacles to their engineering applications as nonablative thermal protection materials. Biomimetic layered or "brick-and-mortar" hybrid composites composed of alternative strong/weak interfaces exhibit excellent strength and high toughness; however, the commonly used interfacial materials are weak and have poor thermal stability and ablation resistance, which strictly limit their use in high-temperature and oxidative environments. In this work, ZrB-based "brick-and-mortar" hybrid ceramics were constructed with a hierarchical biomimetic design to improve the fracture resistance and damage tolerance.
View Article and Find Full Text PDF