Background: Chlamydia trachomatis is the causative agent of the most prevalent bacterial sexually transmitted infections globally. Whole genome sequencing is essential for molecular Chlamydia surveillance; however, its application is hampered by the pathogen's low abundance in clinical specimens and the expensive labor-intensive nature of existing enrichment methodologies for Chlamydia.
Methods: We developed a targeted whole genome amplification tool termed SWITCH by integrating phi29 DNA polymerase-mediated amplification with meticulously designed primer sets to enrich the C trachomatis genome, followed by whole genome sequencing.
The mechanism of substrate hydrolysis of New Delhi metallo-β-lactamase 1 (NDM-1) has been reported, but the process in which NDM-1 captures and transports the substrate into its active center remains unknown. In this study, we investigated the process of the substrate entry into the NDM-1 activity center through long unguided molecular dynamics simulations using meropenem as the substrate. A total of 550 individual simulations were performed, each of which for 200 ns, and 110 of them showed enzyme-substrate binding events.
View Article and Find Full Text PDF