Publications by authors named "Chunbao Charles Xu"

The synthesis of primary amines from renewable biomass and its derivatives through reductive amination has garnered significant attention. How to construct efficient non-noble-metal catalysts that enable low-temperature catalysis still remains challenging. Herein, we report a Cu-doped Co@CoO heterostructure catalyst that features structural Co-CoCuO bifunctional sites, which enable room temperature reductive amination of various aldehydes with 1.

View Article and Find Full Text PDF

The rampant exploitation of fossil fuels has led to the significant energy scarcity and environmental disruption, affecting the sound momentum of development and progress of human civilization. To build a closed-loop anthropogenic carbon cycle, development of biofuels employing sustainable biomass feedstocks stands at the forefront of advancing carbon neutrality, yet its widespread adoption is mainly hampered by the high production costs. Montmorillonite, however, has garnered considerable attention serving as an efficient heterogeneous catalyst of ideal economic feasibility for biofuel production, primarily due to its affordability, accessibility, stability, and excellent plasticity.

View Article and Find Full Text PDF

Energy and resource intensive mechanical and chemical pretreatment along with the use of hazardous chemicals are major bottlenecks in widespread lignocellulosic biomass utilization. Herein, the study investigated different pretreatment methods on spruce wood namely supercritical CO (scCO) pretreatment, ultrasound-assisted alkaline pretreatment, and acetosolv pulping-alkaline hydrogen peroxide bleaching, to enhance the enzymatic digestibility of wood using optimized enzyme cocktail. Also, the effect of scCO pretreatment on enzyme cocktail was investigated after optimizing the concentration and temperature of cellulolytic enzymes.

View Article and Find Full Text PDF

This study compares batch and continuous supercritical water gasification (SCWG) processes for green hydrogen production from biomass. It offers insights for optimizing processes, enhancing yields, quality, and energy efficiency, assessing scale-up feasibility, and supporting techno-economic analyses. Glucose, glycerol, and black liquor were SCWG-treated at 500 °C with KCO catalyst in a self-built continuous-flow reactor (150 g/h) and a batch reactor (75 mL).

View Article and Find Full Text PDF

Lignocellulosic biomass resource has been widely used as a natural resource for the synthesis of biofuels and bio-based products through pre-treatment, saccharification and fermentation processes. In this review, we delve into the environmental implications of bioethanol production from the widely utilized lignocellulosic biomass resource. The focus of our study is the critical stage of pre-treatment in the synthesis process, which also includes saccharification and fermentation.

View Article and Find Full Text PDF

Strict bans on specific risk materials (SRMs) are in place to prevent the spread of bovine spongiform encephalopathy (BSE). SRMs are characterized as tissues in cattle where misfolded proteins, the potential source of BSE infection, are concentrated. As a result of these bans, SRMs must be strictly isolated and disposed of, resulting in great costs for rendering companies.

View Article and Find Full Text PDF
Article Synopsis
  • - Soil bacteria can survive harsh conditions and produce harmful factors through processes like autoaggregation, biofilm formation, and resistance to antibiotics and heavy metals.
  • - This study examined six cellulolytic bacteria from soil for their virulence traits, resistance to antibiotics/heavy metals, and ability to form biofilms, revealing that some strains showed significant protective abilities.
  • - Although certain strains demonstrated virulence characteristics, further genetic research is needed to fully understand the mechanisms behind their resistance and pathogenic potential.
View Article and Find Full Text PDF

Realization of low temperature and high efficiency oxidation of CaSO is the key to solve the issue of ecological hazards caused by semi-dry sintering flue gas desulfurization ash. The subcritical hydrothermal technology was employed for the oxidation of CaSO, achieving 89.83% of CaSO at 180 °C, 2 MPa for 120 min with a solid-to-liquid ratio of 1:20.

View Article and Find Full Text PDF

Delignified porous wood samples were used as carriers for biofilm formation of a bacterial consortium with the ability to degrade 1,4-dioxane (DX). The delignification treatment of the natural wood resulted in higher porosity, formation of macropores, increase in surface roughness and hydrophilicity of the treated wood pieces. These superior properties of two types of treated carriers (respectively, A and B) compared to the untreated wood resulted in 2.

View Article and Find Full Text PDF

The cellulose nanocrystals (CNCs) were produced from spruce wood using less hazardous and toxic reagents with understanding of influence of process parameters on CNCs properties. This study employed acetosolv pulping followed by alkaline-peroxide bleaching, eliminating highly reactive chemicals such as Na-chlorites and Na-sulfite for cellulose pulp extraction from spruce wood. Cellulose pulp yield of 41.

View Article and Find Full Text PDF

Carbonyl sulfide (COS), a poisonous and harmful gas, is found in industrial gas products from various coal-firing processes. The emission of COS into the atmosphere contributes to aerosol particles that affect the global climate, posing a risk to climate change and population health. In recent years, the total amount of anthropogenic COS emissions has increased significantly, resulting in the prominent COS pollution problem and becoming a vital environmental issue.

View Article and Find Full Text PDF

The effect of interphase properties on the crystallization behavior of blends of poly(lactic acid) (PLA)/acetylated starch (AS) with different degrees of substitution (DSs) was investigated. Under isothermal crystallization conditions, the rate of crystallization was higher for PLA/DS0.5 and lower for PLA/DS1.

View Article and Find Full Text PDF

Matrine is a traditional botanical pesticide with a broad-spectrum biological activity that is widely applied in agriculture. Halopyrazole groups are successfully introduced to the C13 of matrine to synthesize eight new derivatives with a yield of 78-87%. The insecticidal activity results show that the introduction of halopyrazole groups can significantly improve the insecticidal activity of matrine on , and with a corrected mortality rate of 100%, which is 25-65% higher than matrine.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers isolated six cellulose-degrading bacteria from soil samples at Kingfisher Lake and the University of Manitoba, identified as different species including Paenarthrobacter sp. and Bacillus sp.
  • The cellulase production of these bacteria was optimized by adjusting environmental conditions like pH, temperature, and substrate concentration, resulting in significant enzyme activity.
  • Sucrose was found to greatly enhance cellulase activity, supporting the potential use of these bacteria as biocatalysts for converting cellulose into glucose in industrial applications.
View Article and Find Full Text PDF

To investigate the effects of lignin methylolation and lignin adding stage on the resulted lignin-based phenolic adhesives, Alcell lignin activated with NaOH (AL) or methylolation (ML) was integrated into the phenolic adhesives system by replacing phenol at various adhesive synthesis stages or directly co-polymerizing with phenolic adhesives. Lignin integration into phenolic adhesives greatly increased the viscosity of the resultant adhesives, regardless of lignin methylolation or adding stage. ML introduction at the second stage of adhesive synthesis led to much bigger viscosity than ML or AL introduction into phenolic adhesives at any other stages.

View Article and Find Full Text PDF

Methacrylated lignin was reacted with PH(g) to prepare a phosphorus rich bio-based polymer containing PH/PH functional groups, which were converted to tertiary phosphine units via the phosphane-ene reaction. This represents a straightforward method for the upconversion of low-value biomass waste to useful inorganic polymer with potential utility in metal scavenging applications.

View Article and Find Full Text PDF

In this article, supercritical water gasification of biocrude at different conditions was performed and compared to each other. Three scenarios were considered while treating biocrude originating from cattle manure (CM) and corn husk (CH), namely, uncatalyzed feedstock, catalyzed with 10% Ni-0.08% Ru/AlO and finally catalyzed with 10% Ni-0.

View Article and Find Full Text PDF

The present study demonstrated a sustainable and cost-effective approach to depolymerize/oxidize softwood (SW) and hardwood (HW) kraft lignins using concentrated hydrogen peroxide at temperatures ranging from 25 to 35 °C, in the absence of catalysts or organic solvents. The degree of lignin depolymerization could be simply controlled by reaction time, and no further separation process was needed at the completion of the treatment. The obtained depolymerized lignin products were comprehensively characterized by GPC-UV, FTIR, P-NMR, TGA, Py-GC/MS and elemental analysis.

View Article and Find Full Text PDF

In this study, the adsorption of roxarsone (ROX) onto corncob-derived activated carbon (AC) was optimized using response surface methodology (RSM). Following this, the AC was comprehensively characterized by FT-IR, SEM, and EDS analysis. The results showed that the highest ROX adsorption efficiency of 304.

View Article and Find Full Text PDF

This study investigated the acetylation of starch to improve its processability and compatibility with poly(lactic acid). The temperature at the maximum rate of degradation increased by 3.2% for poly(lactic acid) blends containing acetylated starch degree of substitution 2.

View Article and Find Full Text PDF

Matrine is a traditional Chinese medicine and botanical pesticide with broad biological activities, including pharmacological and agricultural activities. In present work, two matrine derivatives have been successfully synthesized via introducing indole and cyclohexylamino to 13 position of matrine, respectively, with sophocarpine as starting material, and structurally characterized via infrared spectroscopy(IR), MS, 1 H NMR, 13 C NMR and X-ray crystal diffraction. The results of the in vitro biological activity tests showed that these two matrine derivatives exhibited even better activities against human cancer cells Hela229 and insect cell line Sf9 from Spodoptera frugiperda (J.

View Article and Find Full Text PDF
Article Synopsis
  • The study tested activated petroleum coke (APC) and commercial activated carbon (CAC) for removing naphthenic acids and organics from contaminated oil sands water.
  • APC achieved complete removal of specific naphthenic acid compounds and significantly improved total organic carbon (TOC) removal rates when the water was acidified to pH 4.
  • Overall, APC outperformed CAC and showed efficient regeneration capabilities while maintaining adsorption effectiveness after multiple cycles.
View Article and Find Full Text PDF

The present research work aimed at hydrolytic treatment of kraft black liquor (KBL) at 200⁻300 °C for the production of low-molecular-weight depolymerized kraft lignin (DKL). Various process conditions such as reaction temperature, reaction time, initial kraft lignin (KL) substrate concentration, presence of a catalyst (NaOH), capping agent (phenol) or co-solvent (methanol) were evaluated. The research demonstrated effective depolymerization of KL in KBL at 250⁻300 °C with NaOH as a catalyst at a NaOH/lignin ratio of about 0.

View Article and Find Full Text PDF

A highly active and inexpensive Co-Mn mixed-oxide catalyst was prepared and used for selective oxidation of 5-hydroxymethylfurfural (HMF) into 2, 5-furandicarboxylic acid (FDCA). Co-Mn mixed-oxide catalysts with different Co/Mn molar ratios were prepared through a simple solid-state grinding method-a low-cost and green catalyst preparation method. The activity of these catalysts was evaluated for selective aerobic oxidation of HMF into FDCA in water.

View Article and Find Full Text PDF