Drug resistance is an important factor for prostate cancer (PCa) to progress into refractory PCa, and abnormal lipid metabolism usually occurs in refractory PCa, which presents great challenges for PCa therapy. Here, a cluster of differentiation 36 (CD36) inhibitor sulfosuccinimidyl oleate sodium (CD36i) and stearoyl-CoA desaturase 1 (SCD1) siRNA (siSCD1) are selected to inhibit lipid uptake and synthesis in PCa, respectively. To this end, a multiresponsive drug delivery nanosystem, HA@CD36i-TR@siSCD1 is designed.
View Article and Find Full Text PDFInt J Nanomedicine
January 2024
With the development of nanotechnology, nanoparticles (NPs) have shown broad prospects as drug delivery vehicles. However, they exhibit certain limitations, including low biocompatibility, poor physiological stability, rapid clearance from the body, and nonspecific targeting, which have hampered their clinical application. Therefore, the development of novel drug delivery systems with improved biocompatibility and high target specificity remains a major challenge.
View Article and Find Full Text PDFBackground: Doxorubicin (Dox) has been recommended in clinical guidelines for the standard-of-care treatment of breast cancer. However, Dox therapy faces challenges such as hypoxia, acidosis, HO-rich conditions and condensed extracellular matrix in TME as well as low targeted ability.
Methods: We developed a nanosystem H-MnO-Dox-Col NPs based on mesoporous manganese dioxide (H-MnO) in which Dox was loaded in the core and collagenase (Col) was wrapped in the surface.
Second-generation androgen receptor (AR) inhibitors such as enzalutamide are the first-line treatments for castration-resistant prostate cancer (CRPC). Resistance to enzalutamide will greatly increase the difficulty of prostate cancer treatment and reduce the survival time of patients. However, drug-resistant cancer cells seem to be more sensitive to ferroptosis.
View Article and Find Full Text PDFImmune checkpoint blockade has been proven to have great therapeutic potential and has revolutionized the treatment of tumors. However, various limitations remain, including the low response rate of exhausted T cells and mutual regulation of multiple immunosuppressive cell types that compromise the effect of single-target therapy. Nano-delivery systems can be used to regulate the tumor immune microenvironment in favor of immunotherapy.
View Article and Find Full Text PDFResistance to apoptosis is a key mechanism underlying how cancer cells evade tumor therapy. Autophagy can prevent anticancer drug-induced apoptosis and promote tumor resistance. The purpose of this study was to improve the sensitivity and efficacy of chemotherapeutic drugs through the inhibition of autophagy.
View Article and Find Full Text PDFObjective: The purpose of this research is to formulate a biomimetic drug delivery system, which can selectively target glioblastoma (GBM) to deliver the antitumor agent, Gboxin, a novel Complex V inhibitor. Gboxin can specifically inhibit GBM cell growth but not normal cells.
Methods: In the present study, we utilized red blood cell (RBC) membrane and U251 cell membrane to obtain a hybrid biomimetic membrane (RBC-U), and prepared RBC-U coated Gboxin-loaded mesoporous silica nanoparticles ((MSNs/Gboxin)@[RBC-U]) for GBM chemotherapy.
In addition to early detection, early diagnosis, and early surgery, it is of great significance to use new strategies for the treatment of hepatocellular carcinoma (HCC). Studies showed that the combination of sorafenib (SFN) and triptolide (TPL) could reduce the clinical dose of SFN and maintain good anti-HCC effect. But the solubility of SFN and TPL in water is low and both drugs have certain toxicity.
View Article and Find Full Text PDFBackground: Biomimetic nanotechnology-based RNA interference (RNAi) has been successful in improving theranostic efficacy in malignant tumors. Its integration with hybrid biomimetic membranes made of natural cell membranes fused with liposomal membranes is mutually beneficial and extends their biofunctions. However, limited research has focused on engineering such biomimetics to endow them with unique properties and functions, in particular, those essential for a "smart" drug delivery system, such as a tumor microenvironment (TME)-activated multifunctional biomimetic nanoplatform.
View Article and Find Full Text PDFTriptolide (TPL) has been employed to treat hepatocellular carcinoma (HCC). However, the poor water solubility of TPL restricts its applications. Therefore, we prepared TPL-loaded cyclodextrin-based metal-organic framework (TPL@CD-MOF) to improve the solubility and bioavailability of TPL, thus enhancing the anti-tumor effect on HCC.
View Article and Find Full Text PDFThe combination of an immuno-metabolic adjuvant and immune checkpoint inhibitors holds great promise for effective suppression of tumor growth and invasion. In this study, a pH-responsive co-delivery platform was developed for metformin (Met), a known immuno-metabolic modulator, and short interfering RNA (siRNA) targeting fibrinogen-like protein 1 mRNA (siFGL1), using a hybrid biomimetic membrane (from macrophages and cancer cells)-camouflaged poly (lactic-co-glycolic acid) nanoparticles. To improve the endo-lysosomal escape of siRNA for effective cytosolic siRNA delivery, a pH-triggered CO gas-generating nanoplatform was developed using the guanidine group of Met.
View Article and Find Full Text PDFCell membrane- covered drug-delivery nanoplatforms have been garnering attention because of their enhanced bio-interfacing capabilities that originate from source cells. In this top-down technique, nanoparticles (NPs) are covered by various membrane coatings, including membranes from specialized cells or hybrid membranes that combine the capacities of different types of cell membranes. Here, hybrid membrane-coated doxorubicin (Dox)-loaded poly(lactic-co-glycolic acid) (PLGA) NPs (DPLGA@[RAW-4T1] NPs) were fabricated by fusing membrane components derived from RAW264.
View Article and Find Full Text PDFBackground: Enzalutamide (Enz) has shown limited bioavailability via oral administration. Castration-resistant prostate cancer (CRPC) is frequent among patients receiving 18-24 months of androgen deprivation therapy. The nonsteroidal anti-androgen enzalutamide (Enz) used in the treatment of prostate cancer has shown limited bioavailability via oral administration.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2019
Cancer immunotherapy can enhance the antitumor effect of drugs through a combinatorial approach in a synergistic manner. However, the effective targeted delivery of various drugs remains a challenge. We generated a peptide assembling tumor-targeted nanodelivery system based on a breast cancer homing and penetrating peptide for the codelivery of a programmed cell death ligand 1 (PD-L1) small interfering RNA (siRNA) (siPD-L1) and an indoleamine 2,3-dioxygenase inhibitor as a dual blockade of an immune checkpoint.
View Article and Find Full Text PDFExosomes (Exo) hold great promise as endogenous nanocarriers that can deliver biological information between cells. However, Exo are limited in terms of their abilities to target specific recipient cell types. We developed a strategy to isolate Exo exhibiting increased binding to integrin αβ.
View Article and Find Full Text PDFBackground: Macrophages with tumor-tropic migratory properties can serve as a cellular carrier to enhance the efficacy of anti neoplastic agents. However, limited drug loading (DL) and insufficient drug release at the tumor site remain the main obstacles in developing macrophage-based delivery systems. In this study, we constructed a biomimetic delivery system (BDS) by loading doxorubicin (DOX)-loaded reduced graphene oxide (rGO) into a mouse macrophage-like cell line (RAW264.
View Article and Find Full Text PDFEarly diagnosis is primarily important for the therapeutic and prognostic outcomes of malignancies including prostate cancer (PCa). However, the visuality and veracity of ultrasound imaging for the diagnosis and prognostic prediction of PCa remains poor at present. In this study, we developed a new nanoultrasound contrast agent by modifying multi-walled carbon nanotubes (MWCNTs) with polyethylene glycol (PEG) and anti-PSMA aptamer.
View Article and Find Full Text PDFIn this work, we have developed a reducible, self-assembling disulfide cross-linked and peptide-based micelle system for codelivery of miR-4638-5p and DTX to improve the efficacy of castration-resistant prostate cancer (CRPC) therapy. The result showed that DTX in micelles (DTX-VPs) inhibited cell growth and induced apoptosis more effectively than free DTX both in vitro and in vivo. In addition, the DTX and miR-4638-5p loaded micelles (Co-VPs) achieved the most pronounced anticancer effect of all groups.
View Article and Find Full Text PDFImmuno-based oncotherapy has been successfully implemented for cancer treatment. In the present study, we developed a Oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs (CpG ODNs) nano-delivery system based on Multi-walled carbon nanotubes (MWCNTs) conjugated with H3R6 polypeptide (MHR-CpG) for prostate cancer immunotherapy. The in vitro and in vivo toxicity data revealed that the prepared MHR showed high biocompatibility.
View Article and Find Full Text PDFExosomes have emerged as a promising drug carrier with low immunogenicity, high biocompatibility and delivery efficiency. Here in, we isolated exosomes from A33-positive LIM1215 cells (A33-Exo) and loaded them with doxorubicin (Dox). Furthermore, we coated surface-carboxyl superparamagnetic iron oxide nanoparticles (US) with A33 antibodies (A33Ab-US), expecting that these A33 antibodies on the surface of the nanoparticles could bind to A33-positive exosomes and form a complex (A33Ab-US-Exo/Dox) to target A33-positive colon cancer cells.
View Article and Find Full Text PDFJ Control Release
November 2017
The lysosomal degradation pathway of autophagy has a crucial role in protecting cancer cells from multiple endogenous and exogenous stresses, particularly during the pathogenesis of cancer. Accordingly, agents that inhibit autophagy may have broad therapeutic applications. We have developed a novel strategy based on co-delivery of an autophagy related 7 (ATG7) siRNA and docetaxel (DTX) in a crosslinked, reducible, peptide-based micellar system for breast cancer treatment.
View Article and Find Full Text PDFIn the present study, we developed a novel type of reduction-sensitive nanoparticles (NPs) for docetaxel (DTX) delivery based on cross-linked lipoic acid NPs (LANPs). The physicochemical properties, cellular uptake and in vitro cytotoxicity of DTX loaded LANPs (DTX-LANPs) on A549 cells were investigated. Furthermore, the in vivo distribution and in vivo efficacy of DTX-LANPs was evaluated.
View Article and Find Full Text PDFCationic peptides as a non-viral gene vector have become a hotspot of research because of their high transfection efficcacy and safety. Based on our previous study, we synthesized a cationic reduction-responsive vector based on disulfide cross-linked L-arginine, L-histidine and lipoic acid (LHRss) as the co-carrier of both doxorubicin (DOX) and the necrosis factor-related apoptosis-inducing ligand (pTRAIL). The LHRss/DOX/TRAIL construct has reduction-sensitive behavior and an enhanced endosomal escape ability to increase the cytotoxicity of DOX and the transfection efficiency.
View Article and Find Full Text PDF