Publications by authors named "Chun-mei Li"

Antibiotic resistance poses a significant threat to human and animal health worldwide, with farms serving as crucial reservoirs of Antibiotic Resistance Genes (ARGs) and Antibiotic-resistant bacteria. However, the distribution of ARGs in poultry farms and their transmission patterns in the environment remain poorly understood. This study collected samples of aerosol microorganisms, cloacal matter, soil, and vegetables from poultry farms and surrounding environments at three different distances.

View Article and Find Full Text PDF

Background: Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen (APAP). However, the role of the complement inhibitor C2-FH in APAP-induced liver injury remains unclear.

Aim: To explore C2-FH in protecting against APAP-induced liver injury by inhibiting complement activation.

View Article and Find Full Text PDF

The global prevalence of type 2 diabetes mellitus has become a major public health challenge. Dietary intervention is a cornerstone of diabetes management, yet the optimal macronutrient composition remains an open question. In this study, mice were fed a western (W) diet, a moderately high-fat (MHF) diet, a high-protein-high-carbohydrate (HPHC) diet, or a high-protein-low-carbohydrate (HPLC) diet for 22 weeks to compare the effects of different dietary patterns on glucose homeostasis.

View Article and Find Full Text PDF
Article Synopsis
  • * Traditional methods for detecting multiple miRNAs often require different excitation wavelengths, which complicates the process and signal acquisition.
  • * This study introduces a new sensor capable of detecting multiple miRNAs simultaneously using a single excitation wavelength, achieving high sensitivity and specificity, and successfully identifying miRNAs in human serum samples, highlighting its clinical diagnostic potential.
View Article and Find Full Text PDF

Protein aggregation caused by the disruption of proteostasis will lead to cellular cytotoxicity and even cell death, which is implicated in multiple neurodegenerative diseases. The elimination of aggregated proteins is mediated by selective macroautophagy receptors, which is termed aggrephagy. However, the identity and redundancy of aggrephagy receptors in recognizing substrates remain largely unexplored.

View Article and Find Full Text PDF

Background: Insulin resistance (IR) is strongly correlated with the decreased deficiency of testosterone levels in males. The metabolic score for insulin resistance (METS-IR) index is regarded as an innovative measure for the assessment on IR. The research aims to explore the correlation between the METS-IR index and the testosterone levels in males.

View Article and Find Full Text PDF

Chirality is a widespread phenomenon in nature and in living organisms and plays an important role in living systems. The sensitive discrimination of chiral molecular enantiomers remains a challenge in the fields of chemistry and biology. Establishing a simple, fast, and efficient strategy to discriminate the spatial configuration of chiral molecular enantiomers is of great significance.

View Article and Find Full Text PDF

DNA assemblies are commonly used in biosensing, particularly for the detection and imaging of microRNAs (miRNAs), which are biomarkers associated with tumor progression. However, the difficulty lies in the exploration of high-sensitivity analytical techniques for miRNA due to its limited presence in living cells. In this study, we introduced a DNA nanosphere (DS) enhanced catalytic hairpin assembly (CHA) system for the detection and imaging of intracellular miR-21.

View Article and Find Full Text PDF
Article Synopsis
  • Neuropathic pain is a prevalent issue affecting many people, with limited effective treatment options; this study investigates the potential role of microtubule affinity-regulating kinases (MARK1 and MARK2) in this type of pain.
  • Researchers used a rat model of neuropathic pain and employed genetic knockdown of MARKs and a small molecule inhibitor to assess their influence on pain, cognitive function, and anxiety.
  • The findings revealed that inhibiting MARKs can reduce pain-like behaviors and improve cognitive and motor deficits, suggesting that targeting MARKs may offer a new approach for treating neuropathic pain.
View Article and Find Full Text PDF

The treatment of breast cancer (BC) is a serious challenge due to its heterogeneous nature, multidrug resistance (MDR), and limited therapeutic options. Nanoparticle-based drug delivery systems (NDDSs) represent a promising tool for overcoming toxicity and chemotherapy drug resistance in BC treatment. No bibliometric studies have yet been published on the research landscape of NDDS-based treatment of BC.

View Article and Find Full Text PDF
Article Synopsis
  • Keeping lysosomes healthy is really important for cells to grow and for tumors to survive.
  • A protein called CCDC50 helps fix damaged lysosomes, which helps tumors grow and spread.
  • If there’s not enough CCDC50, damaged lysosomes build up and can lead to cell death, making it harder for tumors to survive, so targeting CCDC50 could be a good way to fight melanoma.
View Article and Find Full Text PDF

Tile-based DNA self-assembly provides a versatile approach for the construction of a wide range of nanostructures for various applications such as nanomedicine and advanced materials. The inter-tile interactions are primarily programmed by base pairing, particularly Watson-Crick base pairing. To further expand the tool box for DNA nanotechnology, herein, we have designed DNA tiles that contain both ligands and aptamers.

View Article and Find Full Text PDF

There has always been controversy over how renewable energy technologies can play a role in reducing carbon emissions. Based on the energy patent data and the economic data of 244 prefecture-level cities from 2007 to 2017 in China, we explore the carbon reduction effect of renewable energy technology and its mechanism from the perspective of energy production, conservation, and management. The two-way fixed effect, instrumental variable, spatial Durbin, and mediation effect models are employed to explore empirical results.

View Article and Find Full Text PDF

There are more than 200 subtypes of human papillomavirus (HPV), and high-risk HPVs are a leading cause of cervical cancer. Identifying the genotypes of HPV is significant for clinical diagnosis and cancer control. Herein, we used programmable and modified DNA as the backbone to construct fluorescent genotyping nanodevice for HPV subtype distinction.

View Article and Find Full Text PDF

Challenges remained in precisely real-time monitoring of apoptotic molecular events at the subcellular level. Herein, we developed a new type of intelligent DNA biocomputing nanodevices (iDBNs) that responded to mitochondrial microRNA-21 (miR-21) and microRNA-10b (miR-10b) simultaneously which were produced during cell apoptosis. By hybridizing two hairpins (H1 and H2) onto DNA nanospheres (DNSs) that had been previously modified with mitochondria-targeted triphenylphosphine (TPP) motifs, iDBNs were assembled in which two localized catalytic hairpins self-assembly (CHA) reactions occurred upon the co-stimulation of mitochondrial miR-21 and miR-10b to perform AND logic operations, outputting fluorescence resonance energy transfer (FRET) signals for sensitive intracellular imaging during cell apoptosis.

View Article and Find Full Text PDF

Background: We aimed to evaluate whether extracellular vesicles (EV)-derived microRNAs (miRNAs) can be used as biomarkers for advanced adenoma (AA) and colorectal cancer (CRC).

Methods: We detected the changes in the plasma EV-delivered miRNA profiles in healthy donor (HD), AA patient, and I-II stage CRC patient groups using miRNA deep sequencing assay. We performed the TaqMan miRNA assay using 173 plasma samples (two independent cohorts) from HDs, AA patients, and CRC patients to identify the candidate miRNA(s).

View Article and Find Full Text PDF

Polyvalent ligand-induced cell receptor aggregation is closely related to cell behavior regulation. At present, most of the means to induce receptor aggregation rely on external stimuli such as light, heat, and magnetic fields, which may cause side effects to normal cells. How to achieve receptor aggregation on the cancer cell surface to achieve cell apoptosis selectively is still a challenge.

View Article and Find Full Text PDF

System leakage critically confines the development of cascade DNA systems that need to be implemented in a strict order-by-order manner. In principle, ternary DNA reactants, composed of three single-strand DNA (ssDNA) with a strict equimolar ratio (1:1:1), have been indispensable for successfully cascading upstream entropy-driven DNA circuit (EDC) with downstream circuits, and system leakage will occur with any unbalance of the molar ratio. In this work, we proposed "splitting-reconstruction" and "protection-release" strategies on the potential downstream circuit initiator derived from upstream EDC to guide the construction of EDC-involved cascade systems independent of system leakage derived from unpurified reactants.

View Article and Find Full Text PDF

Owing to the excellent structural rigidity and programmable reaction sites, DNA nanostructures are more and more widely used, but they are limited by high cost, strict sequence requirements, and time-consuming preparation. Herein, a general signal amplifier based on a micelle-supported entropy-driven circuit (MEDC) was designed and prepared for sensitive quantification of biomarkers. By modifying a hydrophobic cholesterol molecule onto a hydrophilic DNA strand, the amphiphilic DNA strand was first prepared and then self-assembled into DNA micelles (DMs) driven by hydrophobic effects.

View Article and Find Full Text PDF

Obesity impairs cognition. Bariatric surgery can result in substantial weight loss in patients with severe obesity; however, the impact of bariatric surgery on cognitive function remains controversial. To quantify the effect of bariatric surgery on cognition in patients with severe obesity, we performed a meta-analysis of 20 studies retrieved from PubMed, Cochrane, and Embase.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus driving the ongoing coronavirus disease 2019 (COVID-19) pandemic, continues to rapidly evolve. Because of the limited efficacy of vaccination in prevention of SARS-CoV-2 transmission and continuous emergence of variants of concern (VOCs), orally bioavailable and broadly efficacious antiviral drugs are urgently needed. Previously, we showed that the parent nucleoside of remdesivir, GS-441524, has potent anti-SARS-CoV-2 activity.

View Article and Find Full Text PDF

DNA nanomachines, a delicate type of molecular machines, have been a research hotspot in biotechnology and materials. Here a two-dimensional (2D) DNA walking nanomachine with high working efficiency and low cost was easily assembled by using graphene oxide (GO) as the working platform for precisely fluorescent bioassay through the binding of target hepatitis B virus DNA (HBV-DNA) and the driving force of Exonuclease III (Exo III). The presence of HBV-DNA made continuous Exo III digestion of the FAM-modified DNA (FAM-DNA) in double-strand DNA (dsDNA) part in a burnt-bridge mechanism to output a "one-to-more" amplified signal.

View Article and Find Full Text PDF

Researches using resting-state functional magnetic resonance imaging (rs-fMRI) have applied different regional measurements to study the intrinsic brain activity (IBA) of patients with Parkinson's disease (PD). Most previous studies have only examined the static characteristics of IBA in patients with PD, neglecting the dynamic features. We sought to explore the concordance between the dynamics of different rs-fMRI regional indices.

View Article and Find Full Text PDF

Development of rapid, sensitive, and selective method for pathogenic bacteria detection is of great importance for food safety, medical diagnostic, and environmental monitoring. Currently, most techniques for low numbers of bacteria detection require advanced instrumentation or skilled operators. Herein, we present a facile colorimetric detection platform for bacterial detection using Ag nanoplates as chromogenic substrate, which takes advantages of the high specificity and affinity of aptamer and the ability of catalase to hydrolyze HO that can etch Ag nanoplates.

View Article and Find Full Text PDF

DNA logic computing has captured increasing interest due to its ability to assemble programmable DNA computing elements for disease diagnosis, gene regulation, and targeted therapy. In this work, we developed an aptamer-equipped high-integrated DNA biocomputing platform (HIDBP-A) with a dual-recognition function that enabled cancer cell targeting. Dual microRNAs were the input signals and can perform AND logic operations.

View Article and Find Full Text PDF