Publications by authors named "Chun-lei Du"

Ultra-precise reflectors in the advanced light source facilities urgently call for local slope error measurements with nano-radian precision. However, the existing methods currently utilized in the long trace profiler systems struggle to meet the requirements. In this paper, we present a weak-value amplification enhanced absolute local slope measurement scheme, in which the surface height difference between two adjacent points can be measured directly with precision on the pico-meter level.

View Article and Find Full Text PDF

Osteoarthritis is a common arthritis disease caused by cartilage tissue damage and degeneration, which is one of the large epidemics that affect human health. The early detection of the pathological changes of articular cartilage can greatly improve the cure rate of disease, but the relevant clinical diagnosis technology has not been developed. In recent years, the applications and researches of terahertz technology are increasingly valued and it has drawn great attention in the field of medicine.

View Article and Find Full Text PDF

Terahertz Time-Domain Spectroscopy (THz-TDS) is one of the effective coherent detection techniques. It has been widely applied in materials, chemistry, biology, security and other fields due to its capabilities such as high signal-to-noise ratio (SNR), broadband detection, working at room temperature, time resolved measurement and others. Limited by the spectrum bandwidth of THz radiation and detection techniques, the measuring range of the traditional THz-TDS system is generally less than several THz, thus the spectral information of high frequencies cannot be obtained.

View Article and Find Full Text PDF

A white organic light-emitting device (WOLED) with a yellow phosphorescence material, bis[2-(4-tertbutylphenyl) benzothiazolato-N,C2 '] iridium (acetylacetonate) [(t-bt)2Ir(acac)], and two blue phosphorescence materials, iridium(Ill) bis (4', 6'-difluorophenylpyridinato) tetrakis(1-pyrazolyl) borate (FIr6) and bis[(4, 6-difluorophenyl)-pyridinato-N, C2 '] (picolinate) iridium (III) (FIrpic), were fabricated. Stable white emission was realized by using undoped ultrathin yellow emissive layer (EML), two doped blue EMLs together with the proper thickness of an interlayer confining the exciton. The WOLED performed pure white light emission with the Commissions Internationale de l'Eclairage (CIE) coordinates of (0.

View Article and Find Full Text PDF