Composite electrolytes composed of a nanoceramic and polymer have been widely studied because of their high ionic conductivity, good Li-ion transference number, and excellent machinability, whereas the intrinsic reason for the improvement of performance is ambiguous. Herein, we have designed a functional polymer skeleton with different types of nanofiller to reveal the superiority of fast ion conductors in composite electrolyte. Three types of ceramics with different dielectric constants and Li-ion transfer ability were selected to prepare composite electrolytes, the composition, structure, and electrochemical performances of which were systematically investigated.
View Article and Find Full Text PDFRapid mass transfer and great electrochemical activity have become the critical points for designing electrodes in vanadium redox flow batteries (VRFBs). In this research, we show a porous graphite felt (GF@P) electrode to improve the electrochemical properties of VRFBs. The generation of pores on graphite felt electrodes is based on etching effects of iron to carbon.
View Article and Find Full Text PDFVanadium redox flow batteries (VRFBs) are receiving increasing interest in energy storage fields because of their safety and versatility. However, the electrocatalytic activity of the electrode is a pivotal factor that still restricts the power and cycling capabilities of VRFBs. Here, a hierarchical carbon micro/nanonetwork (HCN) electrode codoped with nitrogen and phosphorus is prepared for application in VRFBs by cross-linking polymerization of aniline and physic acid, and subsequent pyrolysis on graphite felt.
View Article and Find Full Text PDFMice were immunized with Campylobacter jejuni-S(131) (CJ-S(131)) to establish the lupus-like model. Splenocytes from lupus like mice were challenged with CJ-S(131) to induce inflammatory response in vitro. Bupleurum smithii var.
View Article and Find Full Text PDFThe aim of the present study was to elucidate the biological effectiveness and character of a nanosilver-epidermal growth factor (EGF) sustained-release carrier. This was synthesized using the self-assembly method and then characterized by transmission electron microscopy and UV spectrophotometry. The biological activity of the sustained release carrier was determined through cytological, bacteriological and wound-healing experiments.
View Article and Find Full Text PDF