Publications by authors named "Chun-hong Xia"

Purpose: To characterize the heterogeneity and cell clusters of postnatal lens epithelial cells (LECs) and to investigate the downstream targets of connexin 50 (Cx50) in the regulation of lens homeostasis and lens growth. To determine differentially expressed genes (DEGs) in the connexin 50 knockout (Cx50KO) lens epithelial cells that shed light on novel mechanism underlying the cataract and small size of the Cx50KO lenses.

Methods: Single-cell RNA sequencing (scRNA-seq) of lens epithelial cells isolated from one-month-old Cx50KO and wild-type (WT) mice were performed.

View Article and Find Full Text PDF

Connexin 50 (Cx50) mediated signaling is essential for controlling the lens growth and size. Cx50 mutations cause microphthalmia, smaller lenses, and cataracts in humans and animals. These ocular defects have never been investigated in live Cx50 mutant mice by using non-invasive imaging techniques.

View Article and Find Full Text PDF

The cGMP-phosphodiesterase 6 beta subunit (PDE6B) is an essential component in the phototransduction pathway for light responses in photoreceptor cells. PDE6B gene mutations cause the death of rod photoreceptors, named as hereditary retinitis pigmentosa (RP) in humans and retinal degeneration (RD) in rodents. Here, we report a new RD model, identified from a phenotypic screen of N-ethyl-N-nitrosourea (ENU)-induced mutant mice, which displays retinal degeneration caused by a point mutation in the gene that results in PDE6B-T592I mutant protein.

View Article and Find Full Text PDF

Purpose: The mammalian ocular lens is an avascular multicellular organ that grows continuously throughout life. Traditionally, its cellular organization is investigated using dissected lenses, which eliminates in vivo environmental and structural support. Therefore, in vivo optical imaging methods for studying lenses in their native context in live animals are urgently needed.

View Article and Find Full Text PDF

The retina, behind the transparent optics of the eye, is the only neural tissue whose physiology and pathology can be non-invasively probed by optical microscopy. The aberrations intrinsic to the mouse eye, however, prevent high-resolution investigation of retinal structure and function in vivo. Optimizing the design of a two-photon fluorescence microscope (2PFM) and sample preparation procedure, we found that adaptive optics (AO), by measuring and correcting ocular aberrations, is essential for resolving putative synaptic structures and achieving three-dimensional cellular resolution in the mouse retina in vivo.

View Article and Find Full Text PDF

The mammalian ocular lens is an avascular multicellular organ that grows continuously throughout life. Traditionally, its cellular organization is investigated using dissected lenses, which eliminates in vivo environmental and structural support. Here, we demonstrated that two-photon fluorescence microscopy (2PFM) can visualize lens cells in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the role of connexin 46 (Cx46) in regulating lens stiffness through experiments with Cx46 knockout (Cx46KO) mice of different ages and strains.
  • Cx46KO mice showed significant reductions in lens displacement compared to wild-type (WT) controls, indicating increased lens stiffness, particularly in older mice from both studied strains.
  • The research suggests that the deletion of Cx46 may contribute to the development of presbyopia, as it alters lens stiffness with age, especially in specific genetic backgrounds.
View Article and Find Full Text PDF

Cataracts, named for pathological light scattering in the lens, are known to be associated with increased large protein aggregates, disrupted protein phase separation, and/or osmotic imbalances in lens cells. We have applied synchrotron phase contrast X-ray micro-computed tomography to directly examine an age-related nuclear cataract model in Cx46 knockout (Cx46KO) mice. High-resolution 3D X-ray tomographic images reveal amorphous spots and strip-like dense matter precipitates in lens cores of all examined Cx46KO mice at different ages.

View Article and Find Full Text PDF

Purpose: To investigate the molecular and cellular mechanisms of cataract induced by cold temperatures in young lenses of wild-type C57BL/6J (B6), wild-type 129SvJae (129), and filensin knockout (KO) mice. To determine how lens intermediate filament proteins, filensin (BFSP1) and CP49 (BFSP2), are involved in the formation of cold cataract.

Methods: The formation of cold cataract was examined in enucleated lenses at different temperatures and was imaged under a dissecting microscope.

View Article and Find Full Text PDF

Purpose: To investigate the underlying mechanisms for how the mouse Cx50-R205G point mutation, a homologue of the human Cx50-R198W mutation that is linked to cataract-microcornea syndrome, affects proper lens growth and fiber cell differentiation to lead to severe lens phenotypes.

Methods: EdU labeling, immunostaining, confocal imaging analysis, and primary lens epithelial cell culture were performed to characterize the lens epithelial cell (LEC) proliferation and fiber cell differentiation in wild-type and Cx50-R205G mutant lenses in vivo and in vitro.

Results: The Cx50-R205G mutation severely disrupts the lens size and transparency.

View Article and Find Full Text PDF

We studied the role of sodium/proton exchanger 8 (NHE8) in retinal pigment epithelium (RPE) and photoreceptor cells of adult mouse retina by using the clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease (Cas)9 from Neisseria meningitidis (Nm). Specific single guide RNAs (sgRNAs) were designed to knockdown the Slc9a8 gene, which encodes the NHE8. Nuclease null NmCas9 and sgRNAs were packaged respectively using adeno-associated viral vector (AAV), and delivered into mouse eyes in vivo by subretinal injection on wild-type mice of about four-week-old when mouse retina is fully developed.

View Article and Find Full Text PDF

Transforming growth factor β (TGFβ) and fibroblast growth factor (FGF) signaling pathways play important roles in the proliferation and differentiation of lens epithelial cells (LECs) during development. Low dosage bFGF promotes cell proliferation while high dosage induces differentiation. TGFβ signaling regulates LEC proliferation and differentiation as well, but also promotes epithelial-mesenchymal transitions that lead to cataracts.

View Article and Find Full Text PDF

Neonatal cataracts remain the most common cause of visual loss in children worldwide and have diverse, often unknown, etiologies. This review summarizes current knowledge about the detection, treatment, genetics, risk factors, and molecular mechanisms of congenital cataracts. We emphasize significant progress and topics requiring further study in both clinical cataract therapy and basic lens research.

View Article and Find Full Text PDF

The coordination of complex tumor processes requires cells to rapidly modify their phenotype and is achieved by direct cell-cell communication through gap junction channels composed of connexins. Previous reports have suggested that gap junctions are tumor suppressive based on connexin 43 (Cx43), but this does not take into account differences in connexin-mediated ion selectivity and intercellular communication rate that drive gap junction diversity. We find that glioblastoma cancer stem cells (CSCs) possess functional gap junctions that can be targeted using clinically relevant compounds to reduce self-renewal and tumor growth.

View Article and Find Full Text PDF

A new N-ethyl-N-nitrosourea (ENU)-induced mouse recessive mutation, identified by fundus examination of the eye, develops depigmented patches, indicating retinal disorder. Histology data show aberrant retinal pigment epithelium (RPE) and late-onset photoreceptor cell loss in the mutant retina. Chromosomal mapping and DNA sequencing reveal a point mutation (T to A) of the Slc9a8 gene, resulting in mutant sodium/proton exchanger 8 (NHE8)-M120K protein.

View Article and Find Full Text PDF

The development and maintenance of retinal vasculature require a precise balance between pro-angiogenic and anti-angiogenic factors. However, mechanisms underlying normal homeostasis of retinal vasculature and pathological changes of disrupted retinal vessel development are not fully understood. Recent studies of the low-density lipoprotein receptor-related protein 5 (LRP5) and the very low-density lipoprotein receptor (VLDLR) mutant mice indicate that LRP5 mediates a pro-angiogenic signal while VLDLR mediates an anti-angiogenic signal in retinal vasculature.

View Article and Find Full Text PDF

The mouse semi-dominant Nm2249 mutation displays variable cataracts in heterozygous mice and smaller lenses with severe cataracts in homozygous mice. This mutation is caused by a Gja8(R205G) point mutation in the second extracellular loop of the Cx50 (or α8 connexin) protein. Immunohistological data reveal that Cx50-R205G mutant proteins and endogenous wild-type Cx46 (or α3 connexin) proteins form diffuse tiny spots rather than typical punctate signals of normal gap junctions in the lens.

View Article and Find Full Text PDF

PURPOSE. To identify and characterize the r26 mouse line, which displays depigmented patches in the retina, and to determine the causative gene mutation and study the underlying mechanism. METHODS.

View Article and Find Full Text PDF

Kinesin and dynein are opposite-polarity microtubule motors that drive the tightly regulated transport of a variety of cargoes. Both motors can bind to cargo, but their overall composition on axonal vesicles and whether this composition directly modulates transport activity are unknown. Here we characterize the intracellular transport and steady-state motor subunit composition of mammalian prion protein (PrP(C)) vesicles.

View Article and Find Full Text PDF

Despite the enormous number of studies demonstrating changes in the chaperone-like activity of α-crystallins in vitro, little is known about how these changes influence life-long lens transparency in vivo. Using the γB-crystallin I4F mutant protein as a target for αA-crystallins, we examined how cataract phenotypes are modulated by interactions between α-crystallins with altered chaperone-like activities and γB-I4F proteins in vivo. Double heterozygous α-crystallin knock-out αA(+/-) αB(+/-) mice with a decreased amount of α-crystallins were used to simulate reduced total α-crystallin chaperone-like activity in vivo.

View Article and Find Full Text PDF

Cataracts, named for any opacity in the ocular lens, remain the leading cause of vision loss in the world. Non-surgical methods for cataract prevention are still elusive. We have genetically tested whether enhanced lens gap junction communication, provided by increased α3 connexin (Cx46) proteins expressed from α8(Kiα3) knock-in alleles in Gja8tm1(Gja3)Tww mice, could prevent nuclear cataracts caused by the γB-crystallin S11R mutation in CrygbS11R/S11R mice.

View Article and Find Full Text PDF

Background: The low-density lipoprotein receptor-related protein 5 (LRP5) plays an important role in the development of retinal vasculature. LRP5 loss-of-function mutations cause incomplete development of retinal vessel network in humans as well as in mice. To understand the underlying mechanism for how LRP5 mutations lead to retinal vascular abnormalities, we have determined the retinal cell types that express LRP5 and investigated specific molecular and cellular functions that may be regulated by LRP5 signaling in the retina.

View Article and Find Full Text PDF

Papillorenal syndrome (PRS, also known as renal-coloboma syndrome) is an autosomal dominant disease characterized by potentially-blinding congenital optic nerve excavation and congenital kidney abnormalities. Many patients with PRS have mutations in the paired box transcription factor gene, PAX2. Although most mutations in PAX2 are predicted to result in complete loss of one allele's function, three missense mutations have been reported, raising the possibility that more subtle alterations in PAX2 function may be disease-causing.

View Article and Find Full Text PDF

Purpose: To identify a new mouse mutation developing early-onset dominant retinal degeneration, to determine the causative gene mutation, and to investigate the underlying mechanism.

Methods: Retinal phenotype was examined by indirect ophthalmoscopy, histology, transmission electron microscopy, immunohistochemistry, Western blot analysis, and electroretinography. Causative gene mutation was determined by genomewide linkage analysis and DNA sequencing.

View Article and Find Full Text PDF

Purpose: The aim of this study was to elucidate the molecular mechanisms that lead to a dominant nuclear cataract in a mouse harboring the Y118D mutation in the alphaA-crystallin gene.

Methods: The physicochemical properties of alpha-crystallin obtained from mouse lenses with the Y118D mutation as well as a recombinant Y118D alphaA-crystallin were studied using gel filtration, two-dimensional (2D) gel electrophoresis, multi-angle light scattering, circular dichroism, fluorescence, and chaperone activities.

Results: Both native alpha-crystallin from mutant lens and recombinant alphaA-Y118D displayed higher molecular mass distribution than the wild-type.

View Article and Find Full Text PDF