Publications by authors named "Chun-Yuan Lo"

Tissue hydration provides articular cartilage with dynamic viscoelastic properties. Early stage osteoarthritis (OA) is marked by loss of proteoglycans and glycosaminoglycans (GAG), lowering fixed charge density, and impairing tissue osmotic function. The most common GAG replacement, chondroitin sulfate (CS), has failed to show effectiveness.

View Article and Find Full Text PDF

The accumulation of plastic waste in the environment is a growing environmental, economic, and societal challenge. Plastic upgrading, the conversion of low-value polymers to high-value materials, could address this challenge. Among upgrading strategies, the sulfonation of aromatic polymers is a powerful approach to access high-value materials for a range of applications, such as ion-exchange resins and membranes, electronic materials, and pharmaceuticals.

View Article and Find Full Text PDF

Electrically conductive hydrogels represent an innovative platform for the development of bioelectronic devices. While photolithography technologies have enabled the fabrication of complex architectures with high resolution, photoprinting conductive hydrogels is still a challenging task because the conductive polymer absorbs light which can outcompete photopolymerization of the insulating scaffold. In this study, we introduce an approach to synthesizing conductive hydrogels in one step.

View Article and Find Full Text PDF

Organic mixed ionic-electronic conductors, such as poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), are essential materials for the fabrication of bioelectronic devices due to their unique ability to couple and transport ionic and electronic charges. The growing interest in bioelectronic devices has led to the development of organic electrochemical transistors (OECTs) that can operate in aqueous solutions and transduce ionic signals of biological origin into measurable electronic signals. A common challenge with OECTs is maintaining the stability and performance of the PEDOT:PSS films operating under aqueous conditions.

View Article and Find Full Text PDF

The commercially available polyelectrolyte complex poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is ubiquitous in organic and hybrid electronics. As such, it has often been used as a benchmark material for fundamental studies and the development of new electronic devices. Yet, most studies on PEDOT:PSS have focused on its electronic conductivity in dry environments, with less consideration given to its ion transport, coupled ionic-electronic transport, and charge storage properties in aqueous environments.

View Article and Find Full Text PDF

The friction generated between a finger and an object forms the mechanical stimuli behind fine touch perception. To control friction, and therefore tactile perception, current haptic devices typically rely on physical features like bumps or pins, but chemical and microscale morphology of surfaces could be harnessed to recreate a wider variety of tactile sensations. Here, we sought to develop a new way to create tactile sensations by relying on differences in microstructure as quantified by the degree of crystallinity in polymer films.

View Article and Find Full Text PDF

The mechanical stimuli generated as a finger interrogates the physical and chemical features of an object form the basis of fine touch. Haptic devices, which are used to control touch, primarily focus on recreating physical features, but the chemical aspects of fine touch may be harnessed to create richer tactile interfaces and reveal fundamental aspects of tactile perception. To connect tactile perception with molecular structure, we systematically varied silane-derived monolayers deposited onto surfaces smoother than the limits of human perception.

View Article and Find Full Text PDF

Two new organic dyes-BPDTA and BTTA-possessing dual D-π-A units have been synthesized, characterized, and employed as efficient sensitizers for dye-sensitized solar cells. The two individual D-π-A, which are based on (E)-3-(5'-(4-(bis(4-(hexyloxy)phenyl)amino)phenyl)-[2,2'-bithiophen]-5-yl)-2-cyanoacrylic acid unit (D21L6), are connected directly between phenylene or thiophene within linear π-conjugated backbone to constitute a highly twisted architecture for suppressing the dye aggregation. The new dianchoring dyes exhibited pronounced absorption profile with higher molar extinction coefficient, which is consistent with the results obtained from density functional theory (DFT) calculations.

View Article and Find Full Text PDF

A new synthetic strategy for indolo[2,3-b]carbazole via a double-intramolecular Buchwald-Hartwig reaction has been established. The N-alkylated indolo[2,3-b]carbazole then was adopted as the geometry-fixed core for the synthesis of a new molecule (ICZDTA) bearing two bithiophene π-bridged 2-cyanoacrylic acid groups as the bidentate anchor. The bidentate anchoring together with efficient HOMO (indolo[2,3-b]carbazole) → LUMO (TiO2 nanocluster) electron transfer leads to the successful development of ICZDTA-based DSSC with a power conversion efficiency of 6.

View Article and Find Full Text PDF

Titania nanotube arrays (NTA) generated from anodizing processes are tested as the substrate for surface-assisted laser desorption/ionization mass spectrometry (SALDI MS). The background generated from titania NTA is very low, making the approach suitable for the analysis of small molecules. The upper detectable mass is approximately 29 kDa.

View Article and Find Full Text PDF