Publications by authors named "Chun-Xin Lu"

Article Synopsis
  • Industrial processes produce large amounts of oily saline wastewater, which can be a source of osmotic energy instead of just being discarded.
  • A novel membrane, called HKUST-1@PTFE, combines copper hydroxide nanowires and polystyrenesulfonate sodium to create a hybrid material with efficient cation transport and exceptional oil-repellent properties.
  • This membrane can generate an impressive output power density of 6.21 W/m² using a 50-fold salt gradient, making it a potential solution for long-lasting energy harvesting from oily wastewater while preventing fouling.
View Article and Find Full Text PDF

Photoreceptor cells of vertebrates feature ultrastructural membranes interspersed with abundant photosensitive ion pumps to boost signal generation and realize high gain in dim light. In light of this, superstructured optoionic heterojunctions (SSOHs) with cation-selective nanochannels are developed for manipulating photo-driven ion pumping. A template-directed bottom-up strategy is adopted to sequentially assemble graphene oxide (GO) and PEDOT:PSS into heterogeneous membranes with sculptured superstructures, which feature programmable variation in membrane topography and contain a donor-acceptor interface capable of maintaining electron-hole separation upon photoillumination.

View Article and Find Full Text PDF

Polyelectrolyte complexes (PECs) have emerged as an attractive category of materials for their water processability and some similarities to natural biopolymers. Herein, we employ the intrinsic hydroplasticity of PEC materials to enable the generation of porous structures with the aid of gas foaming. Such foamable materials are fabricated by simply mixing polycation, polyanion, and a UV-initiated chemical foaming agent in an aqueous solution, followed by molding into thin films.

View Article and Find Full Text PDF

Two-dimensional nanofluidic membranes offer great opportunities for developing efficient and robust devices for ionic/water-nexus energy harvesting. However, low counterion concentration and long pathway through limited ionic flux restrict their output performance. Herein, it is demonstrated that rapid diffusion kinetics can be realized in two-dimensional nanofluidic membranes by introducing in-plane holes across nanosheets, which not only increase counterion concentration but also shorten pathway length through the membranes.

View Article and Find Full Text PDF

In the title complex, [CuBr(2)(C(14)H(11)BrN(4)O)(2)], the Cu(II) ion is located on an inversion centre and is coordinated by two ketonic O atoms, two N atoms and two Br atoms, forming a distorted octahedral coordination environment. The two carbonyl groups are trans positioned with C=O bond lengths of 1.256 (5) Å, in agreement with a classical carbonyl bond.

View Article and Find Full Text PDF