Graphene has received much scientific attention as an electrode material for lithium-ion batteries because of its extraordinary physical and electrical properties. However, the lack of structural control and restacking issues have hindered its application as carbon-based anode materials for next generation lithium-ion batteries. To improve its performance, several modification approaches such as edge-functionalization and electron-donating/withdrawing substitution have been considered as promising strategies.
View Article and Find Full Text PDFCalcium titanium oxide has emerged as a highly promising material for optoelectronic devices, with recent studies suggesting its potential for favorable thermoelectric properties. However, current experimental observations indicate a low thermoelectric performance, with a significant gap between these observations and theoretical predictions. Therefore, this study employs a combined approach of experiments and simulations to thoroughly investigate the impact of structural and directional differences on the thermoelectric properties of two-dimensional (2D) and three-dimensional (3D) metal halide perovskites.
View Article and Find Full Text PDFHighly emissive semiconductor nanocrystals, or so-called quantum dots (QDs) possess a variety of applications from displays and biology labeling, to quantum communication and modern security. Though ensembles of QDs have already shown very high photoluminescent quantum yields (PLQYs) and have been widely utilized in current optoelectronic products, QDs that exhibit high absorption cross-section, high emission intensity, and, most important, nonblinking behavior at single-dot level have long been desired and not yet realized at room temperature. In this work, infrared-emissive MAPbI-based halide perovskite QDs is demonstrated.
View Article and Find Full Text PDFGraphite is one of the most widely used negative electrode materials for lithium ion batteries (LIBs). However, because of the rapid growth of demands pursuing higher energy density and charging rates, comprehensive insights into the lithium intercalation and plating processes are critical for further boosting the potential of graphite electrodes. Herein, by utilizing the dihedral-angle-corrected registry-dependent potential (DRIP) (Wen et al.
View Article and Find Full Text PDFA moiré superlattice formed in twisted van der Waals bilayers has emerged as a new tuning knob for creating new electronic states in two-dimensional materials. Excitonic properties can also be altered drastically due to the presence of moiré potential. However, quantifying the moiré potential for excitons is nontrivial.
View Article and Find Full Text PDFThe notorious growth of lithium (Li) dendrites and the instability of the solid electrolyte interface (SEI) during cycling make Li metal anodes unsuitable for use in commercial Li-ion batteries. Herein, the use of simple sugar coating (α-d-glucose) is demonstrated on top of Li metal to halt the growth of Li dendrites and stabilize the SEI. The α-d-glucose layer possesses high surface and adhesive energies toward Li, which promote the homogenous stripping and plating of Li ions on top of the Li metal.
View Article and Find Full Text PDFRevealing the process-structure-property (PSP) relationships of chemically complex mixed-ion perovskite requires comprehensive insights into correlations between microstructures and chemical compositions. However, experimentally determining the microstructural information about complex perovskites over the composition space is a challenging task. In this study, a machine learning enabled energy model was trained for MAFAPb(BrI) mixed-ion perovskite for fast and extensive sampling over the compositional/permutational spaces to map the ion-mixing energies, chemical ordering, and atomic strains.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2021
Lithium (Li) metal is regarded as one of the most promising anode materials for use in next-generation high-energy-density rechargeable batteries because of its high volumetric and gravimetric specific capacity, as well as low reduction potential. Unfortunately, uncontrolled dendritic Li growth during cyclic charging/discharging leads to low columbic efficiency and critical safety issues. Hence, comprehensive understanding of the formation mechanism for Li-dendrite growth, particularly at the onset of dendrite formation, is essential for developing Li-metal anode batteries.
View Article and Find Full Text PDFA series of linear carboxylic acids containing diacetylenic units at different positions along the chain (C H (C≡C) (CH ) COOH, n=7-11) were vacuum-deposited on clean silica substrates. The morphologies of the initial films after UV irradiation were studied. A clear odd-even effect on the morphology of the initial film was observed in that, depending on the spacer length between the diacetylenic unit and carboxyl head group, rings or dendrites of acid dimer layers were obtained.
View Article and Find Full Text PDFFully inorganic perovskites based on Bi and Sb are emerging as alternatives that overcome the toxicity and low stability of their Pb-based perovskite counterparts. Nevertheless, the thin film fabrication of Pb-free perovskites remains a struggle, with poor morphologies and incomplete conversions greatly inhibiting device performance. In this study, we modulated the crystallization of an all-inorganic dimer phase of a Sb perovskite (d-CsSbI) through gradual increase in the annealing temperature, accompanied by the use of Lewis bases for adduct formation.
View Article and Find Full Text PDFHybrid organic-inorganic perovskite materials are promising materials for photovoltaic and optoelectronic applications. Nevertheless, the construction of a computationally efficient potential model for atomistic simulations of perovskite with high fidelity to ab initio calculations is not a trivial task given the chemically complex nature of perovskite in terms of its chemical components and interatomic interactions. In the present study, we demonstrate that artificial neural network (ANN) models can be employed for efficient and accurate potential energy evaluation of MAPbI perovskite materials.
View Article and Find Full Text PDFZnO is a direct band gap material that has numerous optoelectronic applications. Recently, the thermoelectric behavior of ZnO has drawn much attention because it is expected to enrich the multifunctional application of ZnO. However, the high thermal conductivity nature of ZnO (∼50 W/(m·K)) is a challenge to further increase its thermoelectrtic figure of merit ( ZT).
View Article and Find Full Text PDFDissolution of lithium polysulfide (LiPS) into the electrolyte during discharging, causing shuttling of LiPS from the cathode to the lithium (Li) metal, is mainly responsible for the capacity decay and short battery life of lithium-sulfur batteries (LSBs). Herein, we designed a separator comprising polypropylene (PP) coated with MoO3 nanobelts (MNBs), prepared through facile grinding of commercial MoO3 powder. The formation of Li2Sn-MoO3 during discharging inhibited the polysulfide shuttling; during charging, Li passivated LixMoO3 facilitated ionic transfer during the redox reaction by decreasing the charge transfer resistance.
View Article and Find Full Text PDFDespite issues related to dendrite formation, research on Li metal anodes has resurged because of their high energy density. In this study, graphene oxide (GO) layers are decorated onto Li metal anodes through a simple process of drop-casting and spray-coating. The self-assembly of GO is exploited to synthesize coatings having compact, mesoporous, and macroporous morphologies.
View Article and Find Full Text PDFSingle-crystal antimonene flakes are observed on sapphire substrates after the postgrowth annealing procedure of amorphous antimony (Sb) droplets prepared by using molecular beam epitaxy at room temperature. The large wetting angles of the antimonene flakes to the sapphire substrate suggest that an alternate substrate should be adopted to obtain a continuous antimonene film. By using a bilayer MoS/sapphire sample as the new substrate, a continuous and single-crystal antimonene film is obtained at a low growth temperature of 200 °C.
View Article and Find Full Text PDFFocused ion beams (FIBs) are versatile tools with cross-disciplinary applications from the physical and life sciences to archeology. Nevertheless, the nanoscale patterning precision of FIBs is often accompanied by defect formation and sample deformation. In this study, the fundamental mechanisms governing the large-scale plastic deformation of nanostructures undergoing FIB processes are revealed by a series of molecular dynamic simulations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2016
Solution-processed small-molecule organic solar cells are a promising renewable energy source because of their low production cost, mechanical flexibility, and light weight relative to their pure inorganic counterparts. In this work, we developed a coarse-grained (CG) Gay-Berne ellipsoid molecular simulation model based on atomistic trajectories from all-atom molecular dynamics simulations of smaller system sizes to systematically study the nanomorphology of the SMDPPEH/PCBM/solvent ternary blend during solution processing, including the blade-coating process by applying external shear to the solution. With the significantly reduced overall system degrees of freedom and computational acceleration from GPU, we were able to go well beyond the limitation of conventional all-atom molecular simulations with a system size on the order of hundreds of nanometers with mesoscale molecular detail.
View Article and Find Full Text PDFGreen plant photosystem II (PSII) and light-harvesting complex II (LHCII) in the stacked grana regions of thylakoid membranes can self-organize into various PSII-LHCII supercomplexes with crystalline or fluid-like supramolecular structures to adjust themselves with external stimuli such as high/low light and temperatures, rendering tunable solar light absorption spectrum and photosynthesis efficiencies. However, the mechanisms controlling the PSII-LHCII supercomplex organizations remain elusive. In this work, we constructed a coarse-grained (CG) model of the thylakoid membrane including lipid molecules and a PSII-LHCII supercomplex considering association/dissociation of moderately bound-LHCIIs.
View Article and Find Full Text PDFThe nanomorphologies of the bulk heterojunction (BHJ) layer of polymer solar cells are extremely sensitive to the electrode materials and thermal annealing conditions. In this work, the correlations of electrode materials, thermal annealing sequences, and resultant BHJ nanomorphological details of P3HT:PCBM BHJ polymer solar cell are studied by a series of large-scale, coarse-grained (CG) molecular simulations of system comprised of PEDOT:PSS/P3HT:PCBM/Al layers. Simulations are performed for various configurations of electrode materials as well as processing temperature.
View Article and Find Full Text PDFThe "all carbon" organic solar cells (OSCs) based on the homocyclic molecule tetraphenyldibenzoperiflanthene (DBP) as a donor and C60 as an acceptor were comprehensively characterized. The optimized planar-mixed heterojunction device with a DBP:C60 mixture ratio of DBP : C60 (1 : 2) exhibited a power conversion efficiency of 4.47%.
View Article and Find Full Text PDFIn this study, we have strategically designed and convergently synthesized two novel, symmetrical, and linear A-D-A-type π-conjugated donor molecules (TBDTCNR, TBDTCN), each containing a planar electron-rich 2-octylthiene-5-yl-substituted benzodithiophene (TBDT) unit as the core, flanked by octylthiophene units and end-capped with electron-deficient cyanoacetate (CNR) or dicyanovinyl (CN) units. We thoroughly characterized both of these materials and investigated the effects of the end groups (CNR, CN) on their optical, electrochemical, morphological, and photovoltaic properties. We then fabricated solution-processed bulk heterojunction organic solar cells incorporating TBDTCNR and TBDTCN.
View Article and Find Full Text PDFGrowth of large-area, few-layer graphene has been reported recently through the catalytic decomposition of methane (CH(4)) over a Cu surface at high temperature. In this study, we used ab initio calculations to investigate the minimum energy pathways of successive dehydrogenation reactions of CH(4) over the Cu (111) surface. The geometries and energies of all the reaction intermediates and transition states were identified using the climbing image nudged elastic band method.
View Article and Find Full Text PDFAtomic simulations of the growth of polycrystalline Ni demonstrate that deposited atoms incorporate into the film at boundaries, resulting in compressive stress generation. Incorporated atoms can also leave the boundaries and thus relieve compressive stress. This leads to a complex interplay between growth stress, adatom incorporation, and surface structure.
View Article and Find Full Text PDFHigh-resolution electron microscopy investigations of Au films show that adatoms on (100) surfaces insert into the underlying terrace to form surface dislocations. This injection readily occurs when the number of adatoms on a terrace is approximately 20 atoms or less. The surface dislocation glides along the terrace, but is repelled from the edges.
View Article and Find Full Text PDF