Publications by authors named "Chun-Shan Luo"

Diatoms are important components of marine ecosystems and contribute greatly to the world's primary production. Despite their important roles in ecosystems, the molecular basis of how diatoms cope with oxidative stress caused by nutrient fluctuations remains largely unknown. Here, an isobaric tags for relative and absolute quantitation (iTRAQ) proteomic method was coupled with a series of physiological and biochemical techniques to explore oxidative stress- and cell fate decision-related cellular and metabolic responses of the diatom Thalassiosira pseudonana to nitrate (N) and inorganic phosphate (P) stresses.

View Article and Find Full Text PDF

Investigation of how diatoms cope with the rapid fluctuations in iron bioavailability in marine environments may facilitate a better understanding of the mechanisms underlying their ecological success, in particular their ability to proliferate rapidly during favorable conditions. In this study, using in vivo biochemical markers and whole-cell iTRAQ-based proteomics analysis, we explored the cellular responses associated with reactive oxygen species (ROS) production and cell fate decision during the early response to Fe limitation in the centric diatom Thalassiosira pseudonana. Fe limitation caused a significant decrease in Photosystem (PS) II photosynthetic efficiency, damage to the photosynthetic electron transport chain in PS I, and blockage of the respiratory chain in complexes III and IV, which could all result in excess ROS accumulation.

View Article and Find Full Text PDF

The marine diatom Chaetoceros muelleri grown under air (0.03% CO2), 10%, 20%, and 30% CO2 conditions was evaluated to determine its potential for CO2 reduction coupled with biodiesel production. The results indicated that C.

View Article and Find Full Text PDF

In this study a comparative proteomics approach involving a mass spectrometric analysis of synchronized cells was employed to investigate the cellular-level metabolic mechanisms associated with siliceous cell wall formation in the pennate diatom Pseudo-nitzschia multiseries. Cultures of P. multiseries were synchronized using the silicate limitation method.

View Article and Find Full Text PDF