Hepatocellular carcinoma (HCC) is clinically distinguished by its covert onset, rapid progression, high recurrence rate, and poor prognosis. Studies have revealed that SETDB1 (SET Domain Bifurcated 1) is a histone H3 methyltransferase located on chromosome 1 and plays a crucial role in carcinogenesis. Therefore, we aimed to evaluate the clinical significance of SETDB1 expression in HCC.
View Article and Find Full Text PDFThe PIWI-interacting RNA (piRNA) pathway is an adaptive defense system wherein piRNAs guide PIWI family Argonaute proteins to recognize and silence ever-evolving selfish genetic elements and ensure genome integrity. Driven by this intensive host-pathogen arms race, the piRNA pathway and its targeted transposons have coevolved rapidly in a species-specific manner, but how the piRNA pathway adapts specifically to target silencing in mammals remains elusive. Here, we show that mouse MILI and human HILI piRNA-induced silencing complexes (piRISCs) bind and cleave targets more efficiently than their invertebrate counterparts from the sponge Ephydatia fluviatilis.
View Article and Find Full Text PDFMethods Mol Biol
January 2023
A genetic disorder is a disease caused by an abnormal DNA sequence, and almost half of the known pathogenic monogenetic mutations are caused by G-to-A mutation (Landrum et al., Nucleic Acids Res 44:D862-868, 2016). Adenine base editors (ABE), developed from the CRISPR, hold the great promise to mediate the A-to-G transition in genomic DNA while not inducing DNA cleavage (Gaudelli et al.
View Article and Find Full Text PDFThe dynamic three-dimensional structures of chromatin and extrachromosomal DNA molecules regulate fundamental cellular processes and beyond. However, the visualization of specific DNA sequences in live cells, especially nonrepetitive sequences accounting for most of the genome, is still vastly challenging. Here, we introduce a robust CRISPR-mediated fluorescence in situ hybridization amplifier (CRISPR FISHer) system, which exploits engineered sgRNA and protein trimerization domain-mediated, phase separation-based exponential assembly of fluorescent proteins in the CRISPR-targeting locus, conferring enhancements in both local brightness and signal-to-background ratio and thus achieving single sgRNA-directed visualization of native nonrepetitive DNA loci in live cells.
View Article and Find Full Text PDFObjective: The objective of this study is to develop a novel method for monitoring the integrity of motor neurons in vivo by quantifying net retrograde axonal transport.
Methods: The method uses single photon emission computed tomography to quantify retrograde transport to spinal cord of tetanus toxin fragment C ( I-TTC) following intramuscular injection. We characterized the transport profiles in 3 transgenic mouse models carrying amyotrophic lateral sclerosis (ALS)-associated genes, aging mice, and SOD1 transgenic mice following CRISPR/Cas9 gene editing.
Hepatocellular carcinoma (HCC) is characterized by a poor prognosis and accounts for the fourth common cause of cancer-related deaths. Recently, pyroptosis has been revealed to be involved in the progression of multiple cancers. However, the role of pyroptosis in the HCC prognosis remains elusive.
View Article and Find Full Text PDFBackground And Aims: Hepatocellular carcinoma (HCC) is among the most common cancer types worldwide, yet patients with HCC have limited treatment options. There is an urgent need to identify drug targets that specifically inhibit the growth of HCC cells.
Approach And Results: We used a CRISPR library targeting ~2,000 druggable genes to perform a high-throughput screen and identified adenylosuccinate lyase (ADSL), a key enzyme involved in the de novo purine synthesis pathway, as a potential drug target for HCC.
CRISPR/Cas genome editing is a simple, cost effective, and highly specific technique for introducing genetic variations. In mammalian cells, CRISPR/Cas can facilitate non-homologous end joining, homology- directed repair, and single-base exchanges. Cas9/Cas12a nuclease, dCas9 transcriptional regulators, base editors, PRIME editors and RNA editing tools are widely used in basic research.
View Article and Find Full Text PDFThis study aims to investigate the value of mitogen-activated protein kinases (MAPKs) for paraquat (PQ)-induced apoptosis in human lung epithelial-like A549 cells and the specific mechanism. A549 cell apoptosis were induced by PQ. These cells were divided into six groups: control group (cells were cultured in RPMI-1640 medium); SP600125 group (cells were preconditioned with SP600125); SB203580 group (cells were preconditioned with SB203580); PQ group (cells were treated with PQ); SP600125+PQ group (cells were preconditioned with SP600125 following PQ); SB203580+PQ group (cells were preconditioned with SB203580 following PQ).
View Article and Find Full Text PDFIn contrast to traditional CRISPR-Cas9 homology-directed repair, base editing can correct point mutations without supplying a DNA-repair template. Here we show in a mouse model of tyrosinaemia that hydrodynamic tail-vein injection of plasmid DNA encoding the adenine base editor (ABE) and a single-guide RNA (sgRNA) can correct an A>G splice-site mutation. ABE treatment partially restored splicing, generated fumarylacetoacetate hydrolase (FAH)-positive hepatocytes in the liver, and rescued weight loss in mice.
View Article and Find Full Text PDFThe present study aimed to explore the role of endoplasmic reticulum calcium (ER Ca2+) in the apoptosis of human lung type II alveolar epithelial A549 cells induced by paraquat (PQ) in vitro. PQ significantly elevated the intracellular Ca2+ concentration. Treatment with the Ca2+‑ATPase inhibitor thapsigargin significantly increased PQ‑induced cytotoxicity, elevated the intracellular level of Ca2+, and increased the apoptosis rate, the protein expression of glucose‑regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP), and the activities of caspase‑7 and caspase‑12 in PQ‑treated cells.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is an aggressive subtype of liver cancer with few effective treatments, and the underlying mechanisms that drive HCC pathogenesis remain poorly characterized. Identifying genes and pathways essential for HCC cell growth will aid the development of new targeted therapies for HCC. Using a kinome CRISPR screen in three human HCC cell lines, we identified transformation/transcription domain-associated protein (TRRAP) as an essential gene for HCC cell proliferation.
View Article and Find Full Text PDFColon cancer is the third most common cancer and the second leading cause of cancer-related death in the United States, emphasizing the need for the discovery of new cellular targets. Using a metabolomics approach, we report here that epoxygenated fatty acids (EpFA), which are eicosanoid metabolites produced by cytochrome P450 (CYP) monooxygenases, were increased in both the plasma and colon of azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon cancer mice. CYP monooxygenases were overexpressed in colon tumor tissues and colon cancer cells.
View Article and Find Full Text PDFCRISPR-Cas9 genome editing has transformed biotechnology and therapeutics. However, in vivo applications of some Cas9s are hindered by large size (limiting delivery by adeno-associated virus [AAV] vectors), off-target editing, or complex protospacer-adjacent motifs (PAMs) that restrict the density of recognition sequences in target DNA. Here, we exploited natural variation in the PAM-interacting domains (PIDs) of closely related Cas9s to identify a compact ortholog from Neisseria meningitidis-Nme2Cas9-that recognizes a simple dinucleotide PAM (NCC) that provides for high target site density.
View Article and Find Full Text PDFBackground: Clustered, regularly interspaced, short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) have recently opened a new avenue for gene therapy. Cas9 nuclease guided by a single-guide RNA (sgRNA) has been extensively used for genome editing. Currently, three Cas9 orthologs have been adapted for in vivo genome engineering applications: Streptococcus pyogenes Cas9 (SpyCas9), Staphylococcus aureus Cas9 (SauCas9), and Campylobacter jejuni (CjeCas9).
View Article and Find Full Text PDFParaquat (PQ) is one of the most popular herbicides and has been widely used all over the world over the past several decades. However, PQ exposure can cause multiple organ failure, especially acute lung injury in humans as well as in rodent animals. Mitochondrial dysfunction plays a crucial role in PQ-induced lung cell damage.
View Article and Find Full Text PDFWe report a genome-editing strategy to correct compound heterozygous mutations, a common genotype in patients with recessive genetic disorders. Adeno-associated viral vector delivery of Cas9 and guide RNA induces allelic exchange and rescues the disease phenotype in mouse models of hereditary tyrosinemia type I and mucopolysaccharidosis type I. This approach recombines non-mutated genetic information present in two heterozygous alleles into one functional allele without using donor DNA templates.
View Article and Find Full Text PDFNat Rev Gastroenterol Hepatol
May 2018
CRISPR–Cas9 has revolutionized biomedical research. Studies in the past few years have achieved notable successes in hepatology, such as correction of genetic disease genes and generation of liver cancer animal models. Where does this technology stand at the frontier of basic and translational liver research?
View Article and Find Full Text PDFParaquat (PQ), as one of the most widely used herbicides in the world, can cause severe lung damage in humans and animals. This study investigated the underlying molecular mechanism of PQ-induced lung cell damage and the protective role of salubrinal. Human lung epithelial-like A549 cells were treated with PQ for 24h and were pre-incubated with salubrinal for 2h, followed by 500μM of PQ treatment.
View Article and Find Full Text PDF