Publications by authors named "Chun-Liang Pan"

Physiological dysfunction confers negative valence to coincidental sensory cues to induce the formation of aversive associative memory. How peripheral tissue stress engages neuromodulatory mechanisms to form aversive memory is poorly understood. Here, we show that in the nematode C.

View Article and Find Full Text PDF

Physiological stress represents a drastic change of internal state and can drive avoidance behavior, but the neural circuits are incompletely defined. Here, we characterize a sensory-interneuron circuit for mitochondrial stress-induced avoidance behavior in C. elegans.

View Article and Find Full Text PDF

Physiological stress induces aversive memory formation and profoundly impacts animal behavior. In C. elegans, concurrent mitochondrial disruption induces aversion to the bacteria that the animal inherently prefers, offering an experimental paradigm for studying the neural basis of aversive memory.

View Article and Find Full Text PDF

Mechanical stimuli have profound effects on the structure and function of various cells and tissues. In this issue of Developmental Cell, Tao et al. report that mechanosensory ion channels mediate the effects of cell membrane guidance cues on the morphogenesis of neuronal dendrites.

View Article and Find Full Text PDF

Cell polarity is regulated by both intrinsic properties of the cell and extrinsic factors in the environment. Wnts are secreted glycoproteins in graded distribution, and they function as morphogens to instruct cell fate and as guidance cues to steer axon growth cone, respectively. Recent studies suggest that Wnts also instruct cell polarization in diverse contexts, by engaging cytoskeletal machineries or transcriptional mechanisms.

View Article and Find Full Text PDF

SignificancePhysiological stress triggers avoidance behavior, allowing the animals to stay away from potential threats and optimize their chance of survival. Mitochondrial disruption, a common physiological stress in diverse species, induces the nematode to avoid non-pathogenic bacteria through a serotonergic neuronal circuit. We find that distinct neurons, communicated through serotonin and a specific serotonin receptor, are required for the formation and retrieval of this learned aversive behavior.

View Article and Find Full Text PDF

Physiological stress triggers aversive learning that profoundly alters animal behavior. Systemic mitochondrial disruption induces avoidance of C. elegans to non-pathogenic food bacteria.

View Article and Find Full Text PDF

Mitochondrial functions across different tissues are regulated in a coordinated fashion to optimize the fitness of an organism. Mitochondrial unfolded protein response (UPR) can be nonautonomously elicited by mitochondrial perturbation in neurons, but neuronal signals that propagate such response and its physiological significance remain incompletely understood. Here, we show that in C.

View Article and Find Full Text PDF

Live-cell imaging analysis provides tremendous information for the study of cellular events such as growth cone migration in neuronal development. Here, we describe a protocol for live-cell imaging of migrating PVD dendritic growth cones in the nematode by spinning-disk confocal microscopy. Fluorescently labeled growth cones and cytoskeletal proteins could be continuously observed for 4-6 h in mid-stage larvae.

View Article and Find Full Text PDF

Wnt signalling is one of a few conserved pathways that control diverse aspects of development and morphogenesis in all metazoan species. Endocytosis is a key mechanism that regulates the secretion and graded extracellular distribution of Wnt glycoproteins from the source cells, as well as Wnt signal transduction in the receiving cells. However, controversies exist regarding the requirement of clathrin-dependent endocytosis in Wnt signalling.

View Article and Find Full Text PDF

Self-avoidance is a conserved mechanism that prevents crossover between sister dendrites from the same neuron, ensuring proper functioning of the neuronal circuits. Several adhesion molecules are known to be important for dendrite self-avoidance, but the underlying molecular mechanisms are incompletely defined. Here, we show that FMI-1/Flamingo, an atypical cadherin, is required autonomously for self-avoidance in the multidendritic PVD neuron of The mutant shows increased crossover between sister PVD dendrites.

View Article and Find Full Text PDF

Age-dependent cognitive and behavioral deterioration may arise from defects in different components of the nervous system, including those of neurons, synapses, glial cells, or a combination of them. We find that AFD, the primary thermosensory neuron of Caenorhabditis elegans, in aged animals is characterized by loss of sensory ending integrity, including reduced actin-based microvilli abundance and aggregation of thermosensory guanylyl cyclases. At the functional level, AFD neurons in aged animals are hypersensitive to high temperatures and show sustained sensory-evoked calcium dynamics, resulting in a prolonged operating range.

View Article and Find Full Text PDF

Neurite fasciculation through contact-dependent signaling is important for the wiring and function of the neuronal circuits. Here, we describe a type of axon-dendrite fasciculation in C. elegans, where proximal dendrites of the nociceptor PVD adhere to the axon of the ALA interneuron.

View Article and Find Full Text PDF

Signaling that instructs the migration of neurons needs to be tightly regulated to ensure precise positioning of neurons and subsequent wiring of the neuronal circuits. Wnt-Frizzled signaling controls neuronal migration in metazoans, in addition to many other aspects of neural development. We show that VANG-1, a membrane protein that acts in the planar cell polarity (PCP) pathway, antagonizes Wnt signaling by facilitating endocytosis of the Frizzled receptors.

View Article and Find Full Text PDF

Wnts are a highly conserved family of secreted glycoproteins that play essential roles in the morphogenesis and body patterning during the development of metazoan species. In recent years, mounting evidence has revealed important functions of Wnt signalling in diverse aspects of neural development, including neuronal polarization, guidance and branching of the axon and dendrites, as well as synapse formation and its structural remodelling. In contrast to Wnt signalling in cell proliferation and differentiation, which mostly acts through β-catenin-dependent pathways, Wnts engage a diverse array of non-transcriptional cascades in neuronal development, such as the planar cell polarity, cytoskeletal or calcium signalling pathways.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how the Wnt-secretory factor MIG-14/Wntless helps C. elegans neurons avoid overlapping dendrites, which is critical for neural function.
  • Findings show that mutations in mig-14 lead to dendrite overlap, while increasing MIG-14 levels causes dendrites to push apart, highlighting its role in self-avoidance.
  • Additionally, the research reveals that MIG-14's involvement in dendrite self-avoidance is separate from its role in Wnt secretion and involves a mechanism that relies on actin assembly.
View Article and Find Full Text PDF

Spatial arrangement of neurite branching is instructed by both attractive and repulsive cues. Here we show that in C. elegans, the Wnt family of secreted glycoproteins specify neurite branching sites in the PLM mechanosensory neurons.

View Article and Find Full Text PDF

Sensory perception, including thermosensation, shapes longevity in diverse organisms, but longevity-modulating signals from the sensory neurons are largely obscure. Here we show that CRH-1/CREB activation by CMK-1/CaMKI in the AFD thermosensory neuron is a key mechanism that maintains lifespan at warm temperatures in C. elegans.

View Article and Find Full Text PDF

Delivering gene constructs into the dorsal root ganglia (DRG) is a powerful but challenging therapeutic strategy for sensory disorders affecting the DRG and their peripheral processes. The current delivery methods of direct intra-DRG injection and intrathecal injection have several disadvantages, including potential injury to DRG neurons and low transfection efficiency, respectively. This study aimed to develop a spinal nerve injection strategy to deliver polyethylenimine mixed with plasmid (PEI/DNA polyplexes) containing green fluorescent protein (GFP).

View Article and Find Full Text PDF

Decline in mitochondrial morphology and function is a hallmark of neuronal aging. Here we report that progressive mitochondrial fragmentation is a common manifestation of aging Caenorhabditis elegans neurons and body wall muscles. We show that sensory-evoked activity was essential for maintaining neuronal mitochondrial morphology, and this activity-dependent mechanism required the Degenerin/ENaC sodium channel MEC-4, the L-type voltage-gated calcium channel EGL-19, and the Ca/calmodulin-dependent kinase II (CaMKII) UNC-43.

View Article and Find Full Text PDF

Small fiber neuropathy is a syndrome of diverse disease etiology because of multiple pathophysiologic mechanisms with major presentations of neuropathic pain and autonomic symptoms. Over the past decade, there has been substantial progress in the treatments for neuropathic pain, dysautonomia and disease-modifying strategy. In particular, anticonvulsants and antidepressants alleviate neuropathic pain based on randomized clinical trials.

View Article and Find Full Text PDF

Neuronal cargos are differentially targeted to either axons or dendrites, and this polarized cargo targeting critically depends on the interaction between microtubules and molecular motors. From a forward mutagenesis screen, we identified a gain-of-function mutation in the C. elegans α-tubulin gene mec-12 that triggered synaptic vesicle mistargeting, neurite swelling and neurodegeneration in the touch receptor neurons.

View Article and Find Full Text PDF

Neurons remodel their connectivity in response to various insults, including microtubule disruption. How neurons sense microtubule disassembly and mount remodeling responses by altering genetic programs in the soma are not well defined. Here we show that in response to microtubule disassembly, the Caenorhabditis elegans PLM neuron remodels by retracting its synaptic branch and overextending the primary neurite.

View Article and Find Full Text PDF

The heterogeneity and multigenetic nature of nervous system aging make modeling of it a formidable task in mammalian species. The powerful genetics, simple anatomy and short life span of the nematode Caenorhabditis elegans offer unique advantages in unraveling the molecular genetic network that regulates the integrity of neuronal structures and functions during aging. In this review, we first summarize recent breakthroughs in the morphological and functional characterization of C.

View Article and Find Full Text PDF