Publications by authors named "Chun-Lan Wu"

Purpose: To investigate the effect of a new cleaning and disinfection process of oral impressions on the accuracy of alginate dental impression.

Methods: Sixteen young volunteers were selected to make alginate oral impression (2 times for each upper and lower jaw) and oral scandata acquisition (1 time for each upper and lower jaw) to obtain STL data. The 2 pairs of alginate impressions of each subject were numbered group 1, group 2, inwhich group 1 was not sterilized and the oral impression film in group 2 was treated with the method and steps of new oral impression cleaning and disinfection.

View Article and Find Full Text PDF

The interleukin-23 (IL-23)/IL-17 immune axis has been linked to the pathology of psoriasis, but how this axis contributes to skin inflammation in this disease remains unclear. We measured inflammatory cytokines associated with the IL-23/IL-17 immune axis in the serum of patients with psoriasis using enzyme-linked immunosorbent assays. Psoriasis was induced in male C57BL/6J mice using imiquimod (IMQ) cream, and animals received intraperitoneal injections of recombinant mouse anti-IL-23A or anti-IL-17A antibodies for 7 days.

View Article and Find Full Text PDF

Purpose: The aim of this study was to assess and compare patient satisfaction and time required between silicon rubber impression and intraoral scanning impression.

Methods: Six undergraduates participated in this study. silicon rubber impression and intraoral scanning impression were taken, the time required to obtain the impressions and the scores of visual analog scale(VAS) were recorded.

View Article and Find Full Text PDF

It has recently been shown that sulfur, a solid material in its elementary form S, can stay in a supercooled state as liquid sulfur in an electrochemical cell. We establish that this newly discovered state could have implications for lithium-sulfur batteries. Here, through in situ studies of electrochemical sulfur generation, we show that liquid (supercooled) and solid elementary sulfur possess very different areal capacities over the same charging period.

View Article and Find Full Text PDF

A variety of methods including tuning chemical compositions, structures, crystallinity, defects and strain, and electrochemical intercalation have been demonstrated to enhance the catalytic activity. However, none of these tuning methods provide direct dynamical control during catalytic reactions. Here we propose a new method to tune the activity of catalysts through solid-state ion gating manipulation and adjustment (SIGMA) using a catalysis transistor.

View Article and Find Full Text PDF

Fast-charging and high-energy-density batteries pose significant safety concerns due to high rates of heat generation. Understanding how localized high temperatures affect the battery is critical but remains challenging, mainly due to the difficulty of probing battery internal temperature with high spatial resolution. Here we introduce a method to induce and sense localized high temperature inside a lithium battery using micro-Raman spectroscopy.

View Article and Find Full Text PDF

Supercooled liquid sulfur microdroplets were directly generated from polysulfide electrochemical oxidation on various metal-containing electrodes. The sulfur droplets remain liquid at 155 °C below sulfur's melting point ( = 115 °C), with fractional supercooling change ( - )/ larger than 0.40.

View Article and Find Full Text PDF

Electrochemical intercalation of ions into the van der Waals gap of two-dimensional (2D) layered materials is a promising low-temperature synthesis strategy to tune their physical and chemical properties. It is widely believed that ions prefer intercalation into the van der Waals gap through the edges of the 2D flake, which generally causes wrinkling and distortion. Here we demonstrate that the ions can also intercalate through the top surface of few-layer MoS and this type of intercalation is more reversible and stable compared to the intercalation through the edges.

View Article and Find Full Text PDF

Electric-double-layer (EDL) gating with liquid electrolyte has been a powerful tool widely used to explore emerging interfacial electronic phenomena. Due to the large EDL capacitance, a high carrier density up to 10 cm can be induced, directly leading to the realization of field-induced insulator to metal (or superconductor) transition. However, the liquid nature of the electrolyte has created technical issues including possible side electrochemical reactions or intercalation, and the potential for huge strain at the interface during cooling.

View Article and Find Full Text PDF

Doped semiconductors are the most important building elements for modern electronic devices . In silicon-based integrated circuits, facile and controllable fabrication and integration of these materials can be realized without introducing a high-resistance interface. Besides, the emergence of two-dimensional (2D) materials enables the realization of atomically thin integrated circuits.

View Article and Find Full Text PDF

Maintaining human body temperature is one of the most basic needs for living, which often consumes a huge amount of energy to keep the ambient temperature constant. To expand the ambient temperature range while maintaining human thermal comfort, the concept of personal thermal management has been recently demonstrated in heating and cooling textiles separately through human body infrared radiation control. Realizing these two opposite functions within the same textile would represent an exciting scientific challenge and a significant technological advancement.

View Article and Find Full Text PDF

Whereas standard transmission electron microscopy studies are unable to preserve the native state of chemically reactive and beam-sensitive battery materials after operation, such materials remain pristine at cryogenic conditions. It is then possible to atomically resolve individual lithium metal atoms and their interface with the solid electrolyte interphase (SEI). We observe that dendrites in carbonate-based electrolytes grow along the <111> (preferred), <110>, or <211> directions as faceted, single-crystalline nanowires.

View Article and Find Full Text PDF

A high-capacity stretchable graphitic carbon/Si foam electrode is enabled by a conformal self-healing elastic polymer coating. The composite electrode exhibits high stretchability (up to 88%) and endures 1000 stretching-releasing cycles at 25% strain with detrimental resistance increase. Meanwhile, the electrode delivers a high reversible specific capacity of 719 mA g(-1) and good cycling stability with 81% capacity retention after 100 cycles.

View Article and Find Full Text PDF

To quantitatively evaluate severity of behavioral and psychological symptoms of dementia (BPSD) for vascular dementia (VD). Changes of 51 patients with VD in BPSD between the first and 24th week were assessed using the Neuropsychiatric Inventory (NPI) and the behavioral pathology in Alzheimer's disease (BEHAVE-AD) rating scale, in detrended fluctuation analysis (DFA) represented by diurnal activity (DA), evening activity (EA), and nocturnal activity (NA), and the relationships were analyzed. The subscores of activity disturbances, diurnal rhythm disturbances, and anxieties and phobias in the BEHAVE-AD score, and that of agitation, irritability, and sleep disorder in the NPI score were significantly increased compared with the first week, as was for the changes for EA in the DFA value.

View Article and Find Full Text PDF

The MST family is a subclass of mammalian serine/threonine kinases that are related to the yeast sterile-20 protein and are implicated in regulating cell growth and transformation. The MST3 protein contains a 300-residue catalytic domain and a 130-residue regulatory domain, which can be cleaved by caspase and activated by autophosphorylation, promoting apoptosis. Here, five crystal structures of the catalytic domain of MST3 are presented, including a complex with ADP and manganese, a unique cofactor preferred by the enzyme, and a complex with adenine.

View Article and Find Full Text PDF

Purpose: To observe the relationship of the C-reactive protein (CRP) levels and the severity of the periodontal inflammation and the diabetes glycemic control.

Methods: The CRP levels in serum and in gingival crevicular fluid(GCF) in type 2 diabetes patients with chronic periodontitis, patients with periodontitis alone, patients with type 2 diabetes alone and healthy people were assayed. Glycosylated hemoglobin (HbAlc) in serum was detected.

View Article and Find Full Text PDF

We have found previously that the chemokine receptors CCR5 and CXCR4, which are the coreceptors of HIV, are up-regulated in human macrophage cell line U937 infected by Mycobacterium tuberculosis (MTB). This suggests another possibility to explain the co-infection of MTB and HIV. In order to detect the up-regulation of CCR5 and CXCR4 as a unique phenomenon of MTB infection or a ubiquitous phenomenon of pathogenic bacteria, we investigated the expression changes of these two chemokine receptors in macrophages attacked by another bacterium Actinobacillus actinomycetemcomitans (AA) (from mRNA level and protein level).

View Article and Find Full Text PDF

Objective: Investigate the effects of enamel matrix proteins(EMPs) on the mineralization and attachment of osteoblasts, to explore the possible mechanism of alveolar bone regeneration induced by enamel matrix proteins(EMPs).

Methods: MC3T3-E1 osteoblasts were cultured in vitro and EMPs was added to medium in several concentrations. Cell's mineralizing ability was detected by Von-Kossa stain and attachment ability was detected by counting cells number.

View Article and Find Full Text PDF