Publications by authors named "Chun-Ju Youn"

One of the challenging issues in free-space quantum key distribution (QKD) is the requirement of active compensation of the reference frame between the transmitter and receiver. Reference frame independent (RFI) QKD removes active compensation, but it requires more quantum states. A recent proposal can effectively reduce the required quantum states, but this can be achieved assuming the correlations defined in RFI QKD are symmetric.

View Article and Find Full Text PDF

We present a cost-effective and bandwidth-enhanced 64-Gbaud micro-intradyne coherent receiver based on hybrid integration of InP waveguide-photodetector (WG-PD) and silica planar lightwave circuit (PLC). InP waveguide-photodetector (WG-PD) arrays are simply chip-to-chip bonded and optically butt-coupled to a silica-based dual-polarization optical hybrid chip. Multiple flexible printed circuit boards are adapted for electrical RF and DC wirings, which provide low-cost integration and good RF performance of the receiver.

View Article and Find Full Text PDF

One of the challenges of implementing free-space quantum key distribution (QKD) systems working in daylight is to remove unwanted background noise photons from sunlight. Elaborate elimination of background photons in the spectral, temporal, and spatial domains is an indispensable requirement to decrease the quantum bit error rate (QBER), which guarantees the security of the systems. However, quantitative effects of different filtering techniques and performance optimization in terms of the secure key rate have not been investigated.

View Article and Find Full Text PDF

A high-speed waveguide photodetector has been successfully fabricated for an integrated coherent receiver. Dual laterally tapered structures are introduced for a spot-size converter. We optimize the responsivity and the polarization-dependent loss of the spot-size converter-integrated waveguide photodetector through the beam propagation method simulation.

View Article and Find Full Text PDF

Most polarization-based BB84 quantum key distribution (QKD) systems utilize multiple lasers to generate one of four polarization quantum states randomly. However, random bit generation with multiple lasers can potentially open critical side channels that significantly endangers the security of QKD systems. In this paper, we show unnoticed side channels of temporal disparity and intensity fluctuation, which possibly exist in the operation of multiple semiconductor laser diodes.

View Article and Find Full Text PDF

We present an optimization of spot-size converter (SSC) of waveguide photodetector (PD) for small polarization dependent loss (PDL). Beam-propagation method simulation gives responsivity for each polarization and SSC structure. From the calculated responsivity data, optimum structure of SSC is determined that can be implemented with a sufficient process tolerance.

View Article and Find Full Text PDF

We propose a simple, full-range carrier frequency offset (CFO) algorithm for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. By applying the Chinese remainder theorem (CRT) to training symbol of single frequency, the proposed CFO algorithm has wide range with shorter training symbol. We numerically and experimentally demonstrate the performance of CRT-based algorithms in a 16-ary quadrature amplitude modulation (QAM) CO-OFDM system.

View Article and Find Full Text PDF

We propose and demonstrate the use of subcarrier/polarization-interleaved training symbols for channel estimation and synchronization in polarization-division multiplexed (PDM) coherent optical orthogonal frequency-division multiplexed (CO-OFDM) transmission. The principle, the computational efficiency, and the frequency-offset tolerance of the proposed method are described. We show that the use of subcarrier/polarization interleaving doubles the tolerance to the frequency offset between the transmit laser and the receiver's optical local oscillator as compared to conventional schemes.

View Article and Find Full Text PDF