Publications by authors named "Chun-Jiong Huang"

It is well known that two-dimensional (2D) bosons in homogeneous space cannot undergo real Bose-Einstein condensation, and the superfluid to normal phase transition is Berezinskii-Kosterlitz-Thouless (BKT) type, associated with vortex-antivortex pair unbinding. Here we point out a 2D bosonic system whose low energy physics goes beyond conventional paradigm of 2D homogeneous bosons, i.e.

View Article and Find Full Text PDF

We systematically study the decay of quasi-two-dimensional vortices in an oblate strongly interacting Fermi gas over a wide interaction range and observe that, as the system temperature is lowered, the vortex lifetime increases in the Bose-Einstein condensate (BEC) regime but decreases at unitarity and in the Bardeen-Cooper-Schrieffer (BCS) regime. The observations can be qualitatively captured by a phenomenological model simply involving diffusion and two-body collisional loss, in which the vortex lifetime is mostly determined by the slower process of the two. In particular, the counterintuitive vortex decay in the BCS regime can be interpreted by considering the competition between the temperature dependence of the vortex annihilation rate and that of unpaired fermions.

View Article and Find Full Text PDF

We simulate the two-dimensional XY model in the flow representation by a worm-type algorithm, up to linear system size L=4096, and study the geometric properties of the flow configurations. As the coupling strength K increases, we observe that the system undergoes a percolation transition K_{perc} from a disordered phase consisting of small clusters into an ordered phase containing a giant percolating cluster. Namely, in the low-temperature phase, there exhibits a long-ranged order regarding the flow connectivity, in contrast to the quasi-long-range order associated with spin properties.

View Article and Find Full Text PDF

Vortices play a leading role in many fascinating quantum phenomena. Here we generate a large number of vortices by thermally quenching a fermionic superfluid of ^{6}Li atoms in an oblate optical trap and study their annihilation dynamics and spatial distribution. Over a wide interaction range from the attractive to the repulsive side across the Feshbach resonance, these quasi-two-dimensional vortices are observed to follow algebraic scaling laws both in time and space, having exponents consistent with the two-dimensional universality.

View Article and Find Full Text PDF

Scalable, coherent many-body systems can enable the realization of previously unexplored quantum phases and have the potential to exponentially speed up information processing. Thermal fluctuations are negligible and quantum effects govern the behavior of such systems with extremely low temperature. We report the cooling of a quantum simulator with 10,000 atoms and mass production of high-fidelity entangled pairs.

View Article and Find Full Text PDF

We study the quantum spin dynamics of a frustrated XXZ model on a pyrochlore lattice by using large-scale quantum Monte Carlo simulation and stochastic analytic continuation. In the low-temperature quantum spin ice regime, we observe signatures of coherent photon and spinon excitations in the dynamic spin structure factor. As the temperature rises to the classical spin ice regime, the photon disappears from the dynamic spin structure factor, whereas the dynamics of the spinon remain coherent in a broad temperature window.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: