Publications by authors named "Chun-Hsien Lo"

The 129-residue lysozyme has been shown to form amyloid fibrils in vitro. While methylene blue (MB), a compound in the phenothiazinium family, has been shown to dissemble tau fibril formation, its anti-fibrillogenic effect has not been thoroughly characterized in other proteins/peptides. This study examines the effects of MB on the in vitro fibrillogenesis of lysozyme at pH 2.

View Article and Find Full Text PDF

Human γd-crystallin (Hγd-crystallin), a major protein component of the human eye lens, is associated with the development of juvenile- and mature-onset cataracts. Evidence suggests that nonenzymatic protein glycation plays an important role in the aetiology of cataract and diabetic sequelae. This research compared the effects of various glycation modifiers on Hγd-crystallin aggregation, by treating samples of Hγd-crystallin with ribose, galactose, or methylglyoxal using several biophysical techniques.

View Article and Find Full Text PDF

Amyloid fibril formation is associated with an array of degenerative diseases. While no real cure is currently available, evidence suggests that suppression of amyloid fibrillogenesis is an effective strategy toward combating these diseases. Brilliant blue R (BBR), a disulfonated triphenylmethane compound, has been shown to interact with fibril-forming proteins but exert different effects on amyloid fibrillogenesis.

View Article and Find Full Text PDF

Upregulation of neprilysin (NEP) to reduce Aβ accumulation in the brain is a promising strategy for the prevention of Alzheimer's disease (AD). This report describes the design and synthesis of a quenched fluorogenic peptide substrate qf-Aβ(12-16)AAC (with the sequence VHHQKAAC), which has a fluorophore, Alexa-350, linked to the side-chain of its C-terminal cysteine and a quencher, Dabcyl, linked to its N-terminus. This peptide emitted strong fluorescence upon cleavage.

View Article and Find Full Text PDF

Cataract, a major cause of visual impairment worldwide, is a common disease of the eye lens related to protein aggregation. Several factors including the exposure of ultraviolet irradiation and possibly acidic condition may induce the unfolding and subsequent aggregation of the crystallin proteins leading to crystalline lens opacification. Human γD-crystallin (HγDC), a 173 residue monomeric protein, abundant in the nucleus of the human eye lens, has been shown to aggregate and form amyloid fibrils under acidic conditions and that this aggregation route is thought to be a potential initiation pathway for the onset of age-related nuclear cataract.

View Article and Find Full Text PDF

At least 30 different human proteins can fold abnormally to form the amyloid deposits that are associated with a number of degenerative diseases. The research presented here aimed at understanding the inhibitory potency of a food additive, brilliant blue FCF (BBF), on the amyloid fibril formation of lysozyme. Our results demonstrated that BBF was able to suppress the formation of lysozyme fibrils in a dose-dependent fashion.

View Article and Find Full Text PDF

Cataract, a major cause of visual impairment worldwide, is the opacification of the eye's crystalline lens due to aggregation of the crystallin proteins. The research reported here is aimed at investigating the aggregating behavior of γ-crystallin proteins in various incubation conditions. Thioflavin T binding assay, circular dichroism spectroscopy, 1-anilinonaphthalene-8-sulfonic acid fluorescence spectroscopy, intrinsic (tryptophan) fluorescence spectroscopy, light scattering, and electron microscopy were used for structural characterization.

View Article and Find Full Text PDF