Publications by authors named "Chun-Hao Wong"

Article Synopsis
  • Dynein is an important motor protein that helps organize cells, but its production and function are not well understood.
  • Researchers conducted a CRISPR screen on human cells to identify genes that affect dynein's ability to transport cellular structures, leading to the discovery of 195 relevant gene targets.
  • One notable finding was that the RNA-binding protein SUGP1 enhances dynein function by supporting the activity of another protein, LIS1, which plays a role in cargo movement within cells.
View Article and Find Full Text PDF
Article Synopsis
  • The cytoplasmic dynein-1 motor is crucial for transporting various cellular components towards the minus ends of microtubules, but little is known about its biosynthesis and functional diversity.
  • Researchers conducted a CRISPR loss-of-function screen in human cells, identifying 195 genes that affect dynein cargo transport, with some influencing multiple types of cargo.
  • Analysis of one candidate gene, SUGP1, showed it helps cargo trafficking by maintaining the functionality of LIS1, a dynein activator, suggesting new directions for studying microtubule transport and cellular organization.
View Article and Find Full Text PDF

Loss of function (LoF) mutations in Optineurin can cause recessive amyotrophic lateral sclerosis (ALS) with some heterozygous LoF mutations associated with dominant ALS. The molecular mechanisms underlying the variable inheritance pattern associated with OPTN mutations have remained elusive. We identified that affected members of a consanguineous Middle Eastern ALS kindred possessed a novel homozygous p.

View Article and Find Full Text PDF

Mutations in TANK binding kinase 1 (TBK1) have been linked to amyotrophic lateral sclerosis. Some TBK1 variants are nonsense and are predicted to cause disease through haploinsufficiency; however, many other mutations are missense with unknown functional effects. We exome sequenced 699 familial amyotrophic lateral sclerosis patients and identified 16 TBK1 novel or extremely rare protein-changing variants.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder. We screened 751 familial ALS patient whole-exome sequences and identified six mutations including p.D40G in the gene in 13 individuals.

View Article and Find Full Text PDF

Recent progress revealed the complexity of RNA processing and its association to human disorders. Here, we unveil a new facet of this complexity. Complete loss of function of the ubiquitous splicing factor SFPQ affects zebrafish motoneuron differentiation cell autonomously.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, which causes progressive and eventually fatal loss of motor function. Here, we describe genetic and pathologic characterization of brain tissue banked from 19 ALS patients over nearly 20 years at the Department of Anatomy and the Centre for Brain Research, University of Auckland, New Zealand. We screened for mutations in SOD1, TARDBP, FUS, and C9ORF72 genes and for neuropathology caused by phosphorylated TDP-43, dipeptide repeats (DPRs), and ubiquilin.

View Article and Find Full Text PDF

Mutations in CHCHD10 have recently been reported as a cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. To address the genetic contribution of CHCHD10 to ALS, we have screened a cohort of 425 UK ALS ± frontotemporal dementia patients and 576 local controls in all coding exons of CHCHD10 by Sanger sequencing. We identified a previously reported p.

View Article and Find Full Text PDF

Mutations in the gene encoding profilin 1 (PFN1) have recently been shown to cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. We sequenced the PFN1 gene in a cohort of ALS patients (n = 485) and detected 2 novel variants (A20T and Q139L), as well as 4 cases with the previously identified E117G rare variant (∼ 1.2%).

View Article and Find Full Text PDF